These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36414450)

  • 1. Structural evolution in Au- and Pd-based metallic glass forming liquids and the case for improved molecular dynamics force fields.
    Chen FZ; Ruhland K; Umland C; Bertrand SM; Vogt AJ; Kelton KF; Mauro NA
    J Chem Phys; 2022 Nov; 157(19):194501. PubMed ID: 36414450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breakdown of the Stokes-Einstein relationship and rapid structural ordering in CuZrAl metallic glass-forming liquids.
    Chen FZ; Mauro NA; Bertrand SM; McGrath P; Zimmer L; Kelton KF
    J Chem Phys; 2021 Sep; 155(10):104501. PubMed ID: 34525827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Curie-Weiss behavior of liquid structure and ideal glass state.
    Ryu CW; Dmowski W; Kelton KF; Lee GW; Park ES; Morris JR; Egami T
    Sci Rep; 2019 Dec; 9(1):18579. PubMed ID: 31819088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural disorder in metallic glass-forming liquids.
    Pan SP; Feng SD; Wang LM; Qiao JW; Niu XF; Dong BS; Wang WM; Qin JY
    Sci Rep; 2016 Jun; 6():27708. PubMed ID: 27278113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Onset of Cooperative Dynamics in an Equilibrium Glass-Forming Metallic Liquid.
    Jaiswal A; O'Keeffe S; Mills R; Podlesynak A; Ehlers G; Dmowski W; Lokshin K; Stevick J; Egami T; Zhang Y
    J Phys Chem B; 2016 Feb; 120(6):1142-8. PubMed ID: 26798946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of the structural and Johari-Goldstein relaxations in Pd-based metallic glass-forming liquids.
    Qiao J; Casalini R; Pelletier JM; Kato H
    J Phys Chem B; 2014 Apr; 118(13):3720-30. PubMed ID: 24611812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fractal structural feature related to dynamic crossover in metallic glass-forming liquids.
    Chu W; Yu J; Ren N; Wang Z; Hu L
    Phys Chem Chem Phys; 2023 Feb; 25(5):4151-4160. PubMed ID: 36655679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size effect on dynamics and glass transition in metallic liquids and glasses.
    Li YZ; Sun YT; Lu Z; Li MZ; Bai HY; Wang WH
    J Chem Phys; 2017 Jun; 146(22):224502. PubMed ID: 29166072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal nature of dynamic heterogeneity in glass-forming liquids: A comparative study of metallic and polymeric glass-forming liquids.
    Wang X; Xu WS; Zhang H; Douglas JF
    J Chem Phys; 2019 Nov; 151(18):184503. PubMed ID: 31731847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an Artificial Neural Network.
    Galimzyanov BN; Doronina MA; Mokshin AV
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mean-field model for the Curie-Weiss temperature dependence of coherence length in metallic liquids.
    Lieou CKC; Egami T
    Phys Rev E; 2022 Apr; 105(4-1):044135. PubMed ID: 35590557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wave-Vector Dependence of the Dynamics in Supercooled Metallic Liquids.
    Ruta B; Hechler S; Neuber N; Orsi D; Cristofolini L; Gross O; Bochtler B; Frey M; Kuball A; Riegler SS; Stolpe M; Evenson Z; Gutt C; Westermeier F; Busch R; Gallino I
    Phys Rev Lett; 2020 Jul; 125(5):055701. PubMed ID: 32794848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bond Strength-Coordination Number Fluctuation Model of Viscosity: An Alternative Model for the Vogel-Fulcher-Tammann Equation and an Application to Bulk Metallic Glass Forming Liquids.
    Ikeda M; Aniya M
    Materials (Basel); 2010 Dec; 3(12):5246-5262. PubMed ID: 28883380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How closely do many-body potentials describe the structure and dynamics of Cu-Zr glass-forming alloy?
    Lad KN; Jakse N; Pasturel A
    J Chem Phys; 2017 Mar; 146(12):124502. PubMed ID: 28388152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure effects on structure and dynamics of metallic glass-forming liquid.
    Hu YC; Guan PF; Wang Q; Yang Y; Bai HY; Wang WH
    J Chem Phys; 2017 Jan; 146(2):024507. PubMed ID: 28088136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Range Mass Transport during Structural Transitions in Metallic Glass-Forming Melts.
    Jonas I; Yang F; Meyer A
    Phys Rev Lett; 2019 Aug; 123(5):055502. PubMed ID: 31491331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structural signature of liquid fragility.
    Mauro NA; Blodgett M; Johnson ML; Vogt AJ; Kelton KF
    Nat Commun; 2014 Aug; 5():4616. PubMed ID: 25098937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First x-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier.
    Kelton KF; Lee GW; Gangopadhyay AK; Hyers RW; Rathz TJ; Rogers JR; Robinson MB; Robinson DS
    Phys Rev Lett; 2003 May; 90(19):195504. PubMed ID: 12785956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The glass-forming ability of model metal-metalloid alloys.
    Zhang K; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    J Chem Phys; 2015 Mar; 142(10):104504. PubMed ID: 25770548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids.
    Hu YC; Li FX; Li MZ; Bai HY; Wang WH
    Nat Commun; 2015 Sep; 6():8310. PubMed ID: 26387592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.