These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 36414451)
1. Persistence of an active asymmetric rigid Brownian particle in two dimensions. Ghosh A; Mandal S; Chakraborty D J Chem Phys; 2022 Nov; 157(19):194905. PubMed ID: 36414451 [TBL] [Abstract][Full Text] [Related]
2. Persistence in Brownian motion of an ellipsoidal particle in two dimensions. Ghosh A; Chakraborty D J Chem Phys; 2020 May; 152(17):174901. PubMed ID: 32384838 [TBL] [Abstract][Full Text] [Related]
3. Brownian motion of a self-propelled particle. ten Hagen B; van Teeffelen S; Löwen H J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of sedimenting active Brownian particles. Vachier J; Mazza MG Eur Phys J E Soft Matter; 2019 Jan; 42(1):11. PubMed ID: 30687883 [TBL] [Abstract][Full Text] [Related]
5. Active Brownian particle in homogeneous media of different viscosities: numerical simulations. Lisin EA; Vaulina OS; Lisina II; Petrov OF Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937 [TBL] [Abstract][Full Text] [Related]
6. Mode-coupling theory for tagged-particle motion of active Brownian particles. Reichert J; Mandal S; Voigtmann T Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467 [TBL] [Abstract][Full Text] [Related]
7. Motion of a self-propelled particle with rotational inertia. Lisin EA; Vaulina OS; Lisina II; Petrov OF Phys Chem Chem Phys; 2022 Jun; 24(23):14150-14158. PubMed ID: 35648110 [TBL] [Abstract][Full Text] [Related]
8. Persistent motion of a Brownian particle subject to repulsive feedback with time delay. Kopp RA; Klapp SHL Phys Rev E; 2023 Feb; 107(2-1):024611. PubMed ID: 36932532 [TBL] [Abstract][Full Text] [Related]
9. Steady state of an active Brownian particle in a two-dimensional harmonic trap. Malakar K; Das A; Kundu A; Kumar KV; Dhar A Phys Rev E; 2020 Feb; 101(2-1):022610. PubMed ID: 32168649 [TBL] [Abstract][Full Text] [Related]
10. Brownian motion of arbitrarily shaped particles in two dimensions. Chakrabarty A; Konya A; Wang F; Selinger JV; Sun K; Wei QH Langmuir; 2014 Nov; 30(46):13844-53. PubMed ID: 25357180 [TBL] [Abstract][Full Text] [Related]
11. Smoluchowski diffusion equation for active Brownian swimmers. Sevilla FJ; Sandoval M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052150. PubMed ID: 26066162 [TBL] [Abstract][Full Text] [Related]
12. Active Brownian Motion with Orientation-Dependent Motility: Theory and Experiments. Sprenger AR; Fernandez-Rodriguez MA; Alvarez L; Isa L; Wittkowski R; Löwen H Langmuir; 2020 Jun; 36(25):7066-7073. PubMed ID: 31975603 [TBL] [Abstract][Full Text] [Related]
13. Diffusing diffusivity: Rotational diffusion in two and three dimensions. Jain R; Sebastian KL J Chem Phys; 2017 Jun; 146(21):214102. PubMed ID: 28576093 [TBL] [Abstract][Full Text] [Related]
14. Generalized persistence dynamics for active motion. Sevilla FJ; Castro-Villarreal P Phys Rev E; 2021 Dec; 104(6-1):064601. PubMed ID: 35030873 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Proteins' Rotational Diffusion Coefficients from Simulations of Their Free Brownian Motion in Volume-Occupied Environments. Długosz M; Antosiewicz JM J Chem Theory Comput; 2014 Jan; 10(1):481-91. PubMed ID: 26579925 [TBL] [Abstract][Full Text] [Related]
16. Brownian motion of an ellipsoid. Han Y; Alsayed AM; Nobili M; Zhang J; Lubensky TC; Yodh AG Science; 2006 Oct; 314(5799):626-30. PubMed ID: 17068256 [TBL] [Abstract][Full Text] [Related]
17. Passive particle transport using a transversely propelling polymer "sweeper". Prathyusha KR Soft Matter; 2023 Jun; 19(22):4001-4010. PubMed ID: 37218306 [TBL] [Abstract][Full Text] [Related]
18. Brownian motion of an asymmetrical particle in a potential field. Grima R; Yaliraki SN J Chem Phys; 2007 Aug; 127(8):084511. PubMed ID: 17764273 [TBL] [Abstract][Full Text] [Related]
19. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics. Vijaykumar A; Ouldridge TE; Ten Wolde PR; Bolhuis PG J Chem Phys; 2017 Mar; 146(11):114106. PubMed ID: 28330367 [TBL] [Abstract][Full Text] [Related]
20. Harmonically bound Brownian motion in fluids under shear: Fokker-Planck and generalized Langevin descriptions. Híjar H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022139. PubMed ID: 25768490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]