These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 36414666)

  • 21. Recent Advances in PROTACs for Drug Targeted Protein Research.
    Yao T; Xiao H; Wang H; Xu X
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PROTACs: An Emerging Targeting Technique for Protein Degradation in Drug Discovery.
    Gu S; Cui D; Chen X; Xiong X; Zhao Y
    Bioessays; 2018 Apr; 40(4):e1700247. PubMed ID: 29473971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New Frontiers in the Discovery and Development of PROTACs.
    Barghout SH
    Anticancer Agents Med Chem; 2022 Aug; 22(15):2656-2661. PubMed ID: 35418290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks.
    Karimi M; Wu D; Wang Z; Shen Y
    Bioinformatics; 2019 Sep; 35(18):3329-3338. PubMed ID: 30768156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel candidate disease gene prioritization method using deep graph convolutional networks and semi-supervised learning.
    Azadifar S; Ahmadi A
    BMC Bioinformatics; 2022 Oct; 23(1):422. PubMed ID: 36241966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A deep learning architecture for metabolic pathway prediction.
    Baranwal M; Magner A; Elvati P; Saldinger J; Violi A; Hero AO
    Bioinformatics; 2020 Apr; 36(8):2547-2553. PubMed ID: 31879763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics.
    Khan S; He Y; Zhang X; Yuan Y; Pu S; Kong Q; Zheng G; Zhou D
    Oncogene; 2020 Jun; 39(26):4909-4924. PubMed ID: 32475992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. E3 ligase ligand chemistries: from building blocks to protein degraders.
    Sosič I; Bricelj A; Steinebach C
    Chem Soc Rev; 2022 May; 51(9):3487-3534. PubMed ID: 35393989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead.
    Bondeson DP; Smith BE; Burslem GM; Buhimschi AD; Hines J; Jaime-Figueroa S; Wang J; Hamman BD; Ishchenko A; Crews CM
    Cell Chem Biol; 2018 Jan; 25(1):78-87.e5. PubMed ID: 29129718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation.
    Maniaci C; Hughes SJ; Testa A; Chen W; Lamont DJ; Rocha S; Alessi DR; Romeo R; Ciulli A
    Nat Commun; 2017 Oct; 8(1):830. PubMed ID: 29018234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. OLB-AC: toward optimizing ligand bioactivities through deep graph learning and activity cliffs.
    Yin Y; Hu H; Yang J; Ye C; Goh WWB; Kong AW; Wu J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38889277
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PROTACs- a game-changing technology.
    Konstantinidou M; Li J; Zhang B; Wang Z; Shaabani S; Ter Brake F; Essa K; Dömling A
    Expert Opin Drug Discov; 2019 Dec; 14(12):1255-1268. PubMed ID: 31538491
    [No Abstract]   [Full Text] [Related]  

  • 33. Identifying multi-functional bioactive peptide functions using multi-label deep learning.
    Tang W; Dai R; Yan W; Zhang W; Bin Y; Xia E; Xia J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34651655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Present and Future of Novel Protein Degradation Technology.
    Xia L; Liu W; Song Y; Zhu H; Duan Y
    Curr Top Med Chem; 2019; 19(20):1784-1788. PubMed ID: 31644408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network.
    Pu L; Govindaraj RG; Lemoine JM; Wu HC; Brylinski M
    PLoS Comput Biol; 2019 Feb; 15(2):e1006718. PubMed ID: 30716081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteasomal Degradation of Zn-Dependent Hdacs: The E3-Ligases Implicated and the Designed Protacs That Enable Degradation.
    Márquez-Cantudo L; Ramos A; Coderch C; de Pascual-Teresa B
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PROTACs: Current Trends in Protein Degradation by Proteolysis-Targeting Chimeras.
    Madan J; Ahuja VK; Dua K; Samajdar S; Ramchandra M; Giri S
    BioDrugs; 2022 Sep; 36(5):609-623. PubMed ID: 36098871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.