These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36414754)

  • 1. Dark wing pigmentation as a mechanism for improved flight efficiency in the Larinae.
    Goumas M
    Commun Biol; 2022 Nov; 5(1):1205. PubMed ID: 36414754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of wing color and seasonal changes in ambient temperature and solar irradiation on predicted flight efficiency of the Albatross.
    Hassanalian M; Throneberry G; Ali M; Ben Ayed S; Abdelkefi A
    J Therm Biol; 2018 Jan; 71():112-122. PubMed ID: 29301679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wing morphology, flight type and migration distance predict accumulated fuel load in birds.
    Vincze O; Vágási CI; Pap PL; Palmer C; Møller AP
    J Exp Biol; 2019 Jan; 222(Pt 1):. PubMed ID: 30446537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of darker wings in seabirds in relation to temperature-dependent flight efficiency.
    Rogalla S; Nicolaï MPJ; Porchetta S; Glabeke G; Battistella C; D'Alba L; Gianneschi NC; van Beeck J; Shawkey MD
    J R Soc Interface; 2021 Jul; 18(180):20210236. PubMed ID: 34229457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal impact of migrating birds' wing color on their flight performance: Possibility of new generation of biologically inspired drones.
    Hassanalian M; Abdelmoula H; Ben Ayed S; Abdelkefi A
    J Therm Biol; 2017 May; 66():27-32. PubMed ID: 28477907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wing morphing allows gulls to modulate static pitch stability during gliding.
    Harvey C; Baliga VB; Lavoie P; Altshuler DL
    J R Soc Interface; 2019 Jan; 16(150):20180641. PubMed ID: 30958156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Morphology of Gliding Flight II. Morphology Follows Predictions of Gliding Performance.
    Rader JA; Hedrick TL; He Y; Waldrop LD
    Integr Comp Biol; 2020 Nov; 60(5):1297-1308. PubMed ID: 33184652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
    Klaassen van Oorschot B; Mistick EA; Tobalske BW
    J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hot wings: thermal impacts of wing coloration on surface temperature during bird flight.
    Rogalla S; D'Alba L; Verdoodt A; Shawkey MD
    J R Soc Interface; 2019 Jul; 16(156):20190032. PubMed ID: 31337303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).
    Hieronymus TL
    BMC Evol Biol; 2015 Feb; 15():30. PubMed ID: 25880306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Morphology of Gliding Flight I: Modeling Reveals Distinct Performance Landscapes Based on Soaring Strategies.
    Waldrop LD; He Y; Hedrick TL; Rader JA
    Integr Comp Biol; 2020 Nov; 60(5):1283-1296. PubMed ID: 32766844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gliding swifts attain laminar flow over rough wings.
    Lentink D; de Kat R
    PLoS One; 2014; 9(6):e99901. PubMed ID: 24964089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight.
    KleinHeerenbrink M; Johansson LC; Hedenström A
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28539482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gull dynamic pitch stability is controlled by wing morphing.
    Harvey C; Inman DJ
    Proc Natl Acad Sci U S A; 2022 Sep; 119(37):e2204847119. PubMed ID: 36067296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross sectional geometry of the forelimb skeleton and flight mode in pelecaniform birds.
    Simons EL; Hieronymus TL; O'Connor PM
    J Morphol; 2011 Aug; 272(8):958-71. PubMed ID: 21567447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wing inertia as a cause of aerodynamically uneconomical flight with high angles of attack in hovering insects.
    Phan HV; Park HC
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30111558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights.
    McFarlane L; Altringham JD; Askew GN
    J Exp Biol; 2016 May; 219(Pt 9):1369-77. PubMed ID: 26994175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Wing-Loading Correlates with Dive Performance in Birds, Suggesting a Strategy to Reduce Buoyancy.
    Lapsansky AB; Warrick DR; Tobalske BW
    Integr Comp Biol; 2022 Oct; 62(4):878-889. PubMed ID: 35810134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.