These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 36414834)
21. Contribution of pitcher fragrance and fluid viscosity to high prey diversity in a Nepenthes carnivorous plant from Borneo. Giusto BD; Grosbois V; Fargeas E; Marshall DJ; Gaume L J Biosci; 2008 Mar; 33(1):121-36. PubMed ID: 18376077 [TBL] [Abstract][Full Text] [Related]
22. Winter photosynthetic activity of twenty temperate semi-desert sand grassland species. Tuba Z; Csintalan Z; Szente K; Nagy Z; Fekete G; Larcher W; Lichtenthaler HK J Plant Physiol; 2008 Sep; 165(14):1438-54. PubMed ID: 18346813 [TBL] [Abstract][Full Text] [Related]
23. Iso-Seq analysis of Zulkapli MM; Rosli MAF; Salleh FIM; Mohd Noor N; Aizat WM; Goh HH Genom Data; 2017 Jun; 12():130-131. PubMed ID: 28529881 [TBL] [Abstract][Full Text] [Related]
24. Functional characteristics of phenolic compounds accumulated in young leaves of two subtropical forest tree species of different successional stages. Zhang TJ; Zheng J; Yu ZC; Huang XD; Zhang QL; Tian XS; Peng CL Tree Physiol; 2018 Oct; 38(10):1486-1501. PubMed ID: 29579301 [TBL] [Abstract][Full Text] [Related]
25. Tuning of color contrast signals to visual sensitivity maxima of tree shrews by three Bornean highland Nepenthes species. Moran JA; Clarke C; Greenwood M; Chin L Plant Signal Behav; 2012 Oct; 7(10):1267-70. PubMed ID: 22902686 [TBL] [Abstract][Full Text] [Related]
26. [Comparative research on the effects of different nutrient concentrations on the photopigment content and photosynthesis of two bloom-forming species isolated from the Changjiang River estuary]. Zhao YF; Yu ZM; Song XX; Cao XH Huan Jing Ke Xue; 2009 Mar; 30(3):700-6. PubMed ID: 19432315 [TBL] [Abstract][Full Text] [Related]
27. Spectrofluorometric Insights into the Application of PAM Fluorometry in Photosynthetic Research. Sma-Air S; Ritchie RJ Photochem Photobiol; 2021 Sep; 97(5):991-1000. PubMed ID: 33704805 [TBL] [Abstract][Full Text] [Related]
28. ASYMMETRIC LEAVES1 and REVOLUTA are the key regulatory genes associated with pitcher development in Nepenthes khasiana. Dkhar J; Pareek A Sci Rep; 2019 Apr; 9(1):6318. PubMed ID: 31004112 [TBL] [Abstract][Full Text] [Related]
29. Transcriptomic and metabolomic responses to varying nutrient conditions reveal new insights into pitcher formation in Nepenthes khasiana. Dkhar J; Bagri J; Dhiman K; Pareek A Physiol Plant; 2024; 176(3):e14361. PubMed ID: 38801017 [TBL] [Abstract][Full Text] [Related]
30. Comparative Study of Bacterial Communities in Nepenthes Pitchers and Their Correlation to Species and Fluid Acidity. Kanokratana P; Mhuanthong W; Laothanachareon T; Tangphatsornruang S; Eurwilaichitr L; Kruetreepradit T; Mayes S; Champreda V Microb Ecol; 2016 Aug; 72(2):381-93. PubMed ID: 27287538 [TBL] [Abstract][Full Text] [Related]
31. Enzyme activities in two sister-species of carnivorous pitcher plants (Nepenthes) with contrasting nutrient sequestration strategies. Kocáb O; Bačovčinová M; Bokor B; Šebela M; Lenobel R; Schöner CR; Schöner MG; Pavlovič A Plant Physiol Biochem; 2021 Apr; 161():113-121. PubMed ID: 33581619 [TBL] [Abstract][Full Text] [Related]
32. Electron transport in Tradescantia leaves acclimated to high and low light: thermoluminescence, PAM-fluorometry, and EPR studies. Kalmatskaya OA; Trubitsin BV; Suslichenko IS; Karavaev VA; Tikhonov AN Photosynth Res; 2020 Dec; 146(1-3):123-141. PubMed ID: 32594291 [TBL] [Abstract][Full Text] [Related]
33. Characterization and heterologous expression of a PR-1 protein from traps of the carnivorous plant Nepenthes mirabilis. Buch F; Pauchet Y; Rott M; Mithöfer A Phytochemistry; 2014 Apr; 100():43-50. PubMed ID: 24534104 [TBL] [Abstract][Full Text] [Related]
34. Plasma-membrane H+-ATPases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco. An CI; Fukusaki E; Kobayashi A Planta; 2001 Mar; 212(4):547-55. PubMed ID: 11525511 [TBL] [Abstract][Full Text] [Related]
35. Transcriptomic and Proteomic Analyses of Zulkapli MM; Ab Ghani NS; Ting TY; Aizat WM; Goh HH Front Plant Sci; 2020; 11():625507. PubMed ID: 33552113 [No Abstract] [Full Text] [Related]
36. Pitchers of Nepenthes khasiana express several digestive-enzyme encoding genes, harbor mostly fungi and probably evolved through changes in the expression of leaf polarity genes. Dkhar J; Bhaskar YK; Lynn A; Pareek A BMC Plant Biol; 2020 Nov; 20(1):524. PubMed ID: 33203377 [TBL] [Abstract][Full Text] [Related]
37. A novel type of nutritional ant-plant interaction: ant partners of carnivorous pitcher plants prevent nutrient export by dipteran pitcher infauna. Scharmann M; Thornham DG; Grafe TU; Federle W PLoS One; 2013; 8(5):e63556. PubMed ID: 23717446 [TBL] [Abstract][Full Text] [Related]
38. Characterization and Comparison of Convergence Among Bittleston LS; Benson EL; Bernardin JR; Pierce NE Front Plant Sci; 2022; 13():887635. PubMed ID: 35734258 [TBL] [Abstract][Full Text] [Related]
39. Development and regeneration ability of the wax coverage in Nepenthes alata pitchers: a cryo-SEM approach. Gorb EV; Baum MJ; Gorb SN Sci Rep; 2013 Oct; 3():3078. PubMed ID: 24165663 [TBL] [Abstract][Full Text] [Related]