These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36414838)

  • 1. Assessing Antigen-Adjuvant Complex Stability Against Physical Stresses By wNMR.
    Taraban MB; Briggs KT; Yu YB; Jones MT; Rosner L; Bhambhani A; Williams DM; Farrell C; Reibarkh M; Su Y
    Pharm Res; 2023 Jun; 40(6):1435-1446. PubMed ID: 36414838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the Adsorbed Vaccine Formulations Using Water Proton Nuclear Magnetic Resonance-Comparison with Optical Analytics.
    Taraban MB; Ndung'u T; Karki P; Li K; Fung G; Kirkitadze M; Yu YB
    Pharm Res; 2023 Aug; 40(8):1989-1998. PubMed ID: 37127780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring of the sedimentation kinetics of vaccine adjuvants using water proton NMR relaxation.
    Taraban MB; Yu YB
    Magn Reson Chem; 2021 Feb; 59(2):147-161. PubMed ID: 32888244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sedimentation behavior of quality and freeze-damaged aluminum-adjuvanted vaccines by
    Briggs KT; Taraban MB; Yu YB
    Hum Vaccin Immunother; 2023 Aug; 19(2):2215152. PubMed ID: 37254504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Propylene Glycol-Mitigated Freeze/Thaw Agglomeration of a Frozen Liquid nOMV Vaccine Formulation by Static Light Scattering and Micro-Flow Imaging.
    Mensch CD; Davis HB; Blue JT
    PDA J Pharm Sci Technol; 2015; 69(4):477-98. PubMed ID: 26242785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Water Proton NMR to Characterize Protein Aggregates: Gauging the Response and Sensitivity.
    Taraban MB; DePaz RA; Lobo B; Yu YB
    Anal Chem; 2019 Mar; 91(6):4107-4115. PubMed ID: 30767509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability.
    Clapp T; Siebert P; Chen D; Jones Braun L
    J Pharm Sci; 2011 Feb; 100(2):388-401. PubMed ID: 20740674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-Scale Description of Interfaces between Antigen and Aluminum-Based Adjuvants Used in Vaccines by Dynamic Nuclear Polarization (DNP) Enhanced NMR Spectroscopy.
    Viger-Gravel J; Paruzzo FM; Cazaux C; Jabbour R; Leleu A; Canini F; Florian P; Ronzon F; Gajan D; Lesage A
    Chemistry; 2020 Jul; 26(41):8976-8982. PubMed ID: 32428253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative Analysis of Vaccine Antigen Adsorption to Aluminum Adjuvant Using an Automated High-Throughput Method.
    Ahl PL; Wang SC; Chintala R; Mensch C; Smith WJ; Wenger M; Blue J
    PDA J Pharm Sci Technol; 2018; 72(2):149-162. PubMed ID: 29343619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aluminum adjuvants: preparation, application, dosage, and formulation with antigen.
    Lindblad EB; Schønberg NE
    Methods Mol Biol; 2010; 626():41-58. PubMed ID: 20099120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship of adsorption mechanism of antigens by aluminum-containing adjuvants to in vitro elution in interstitial fluid.
    Jiang D; Morefield GL; HogenEsch H; Hem SL
    Vaccine; 2006 Mar; 24(10):1665-9. PubMed ID: 16246468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Freeze-thaw stress of Alhydrogel ® alone is sufficient to reduce the immunogenicity of a recombinant hepatitis B vaccine containing native antigen.
    Clapp T; Munks MW; Trivedi R; Kompella UB; Braun LJ
    Vaccine; 2014 Jun; 32(30):3765-71. PubMed ID: 24856785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of particle size and antigen binding on effectiveness of aluminum salt adjuvants in a model lysozyme vaccine.
    Clausi A; Cummiskey J; Merkley S; Carpenter JF; Braun LJ; Randolph TW
    J Pharm Sci; 2008 Dec; 97(12):5252-62. PubMed ID: 18398901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quality assurance at the point-of-care: Noninvasively detecting vaccine freezing variability using water proton NMR.
    Briggs KT; Taraban MB; Yu YB
    Vaccine; 2020 Jun; 38(31):4853-4860. PubMed ID: 32482461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of formulation pH and suspension state on freezing-induced agglomeration of aluminum adjuvants.
    Salnikova MS; Davis H; Mensch C; Celano L; Thiriot DS
    J Pharm Sci; 2012 Mar; 101(3):1050-62. PubMed ID: 22113733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of microenvironment pH of aluminum hydroxide adjuvant on the chemical stability of adsorbed antigen.
    Wittayanukulluk A; Jiang D; Regnier FE; Hem SL
    Vaccine; 2004 Mar; 22(9-10):1172-6. PubMed ID: 15003645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro.
    Morefield GL; Sokolovska A; Jiang D; HogenEsch H; Robinson JP; Hem SL
    Vaccine; 2005 Feb; 23(13):1588-95. PubMed ID: 15694511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of surface charge in the optimization of antigen-adjuvant interactions.
    Callahan PM; Shorter AL; Hem SL
    Pharm Res; 1991 Jul; 8(7):851-8. PubMed ID: 1924135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immune response to antigen adsorbed to aluminum hydroxide particles: Effects of co-adsorption of ALF or ALFQ adjuvant to the aluminum-antigen complex.
    Beck Z; Torres OB; Matyas GR; Lanar DE; Alving CR
    J Control Release; 2018 Apr; 275():12-19. PubMed ID: 29432824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of adsorption to aluminum salt adjuvants on the structure and stability of model protein antigens.
    Jones LS; Peek LJ; Power J; Markham A; Yazzie B; Middaugh CR
    J Biol Chem; 2005 Apr; 280(14):13406-14. PubMed ID: 15684430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.