BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36414992)

  • 1. Development of a novel defined minimal medium for Gluconobacter oxydans 621H by systematic investigation of metabolic demands.
    Battling S; Pastoors J; Deitert A; Götzen T; Hartmann L; Schröder E; Yordanov S; Büchs J
    J Biol Eng; 2022 Nov; 16(1):31. PubMed ID: 36414992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of the potential sweetener 5-ketofructose from fructose in fed-batch cultivation with Gluconobacter oxydans.
    Herweg E; Schöpping M; Rohr K; Siemen A; Frank O; Hofmann T; Deppenmeier U; Büchs J
    Bioresour Technol; 2018 Jul; 259():164-172. PubMed ID: 29550669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of 5-ketofructose from fructose or sucrose using genetically modified Gluconobacter oxydans strains.
    Siemen A; Kosciow K; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1699-1710. PubMed ID: 29279957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient fermentation of 5-keto-D-fructose with Gluconobacter oxydans at different scales.
    Battling S; Engel T; Herweg E; Niehoff PJ; Pesch M; Scholand T; Schöpping M; Sonntag N; Büchs J
    Microb Cell Fact; 2022 Dec; 21(1):255. PubMed ID: 36496372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of glycerol utilization in Gluconobacter oxydans 621H for biocatalyst preparation in a low-cost way.
    Yan J; Xu J; Cao M; Li Z; Xu C; Wang X; Yang C; Xu P; Gao C; Ma C
    Microb Cell Fact; 2018 Oct; 17(1):158. PubMed ID: 30296949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of the alternative sweetener 5-ketofructose from sucrose by fructose dehydrogenase and invertase producing Gluconobacter strains.
    Hoffmann JJ; Hövels M; Kosciow K; Deppenmeier U
    J Biotechnol; 2020 Jan; 307():164-174. PubMed ID: 31704125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel plasmid-free Gluconobacter oxydans strains for production of the natural sweetener 5-ketofructose.
    Battling S; Wohlers K; Igwe C; Kranz A; Pesch M; Wirtz A; Baumgart M; Büchs J; Bott M
    Microb Cell Fact; 2020 Mar; 19(1):54. PubMed ID: 32131833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production.
    Wei G; Yang X; Gan T; Zhou W; Lin J; Wei D
    J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1029-34. PubMed ID: 19434434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of auxotrophic deficiencies of Bacillus pumilus DSM 18097 to develop a defined minimal medium.
    Müller J; Beckers M; Mußmann N; Bongaerts J; Büchs J
    Microb Cell Fact; 2018 Jul; 17(1):106. PubMed ID: 29986716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of membrane-bound gluconate-2-dehydrogenase to enhance the production of 2-keto-D-gluconic acid by Gluconobacter oxydans.
    Li K; Mao X; Liu L; Lin J; Sun M; Wei D; Yang S
    Microb Cell Fact; 2016 Jul; 15(1):121. PubMed ID: 27392695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tunable L-arabinose-inducible expression plasmid for the acetic acid bacterium Gluconobacter oxydans.
    Fricke PM; Link T; Gätgens J; Sonntag C; Otto M; Bott M; Polen T
    Appl Microbiol Biotechnol; 2020 Nov; 104(21):9267-9282. PubMed ID: 32974745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High precision genome sequencing of engineered Gluconobacter oxydans 621H by combining long nanopore and short accurate Illumina reads.
    Kranz A; Vogel A; Degner U; Kiefler I; Bott M; Usadel B; Polen T
    J Biotechnol; 2017 Sep; 258():197-205. PubMed ID: 28433722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Yield Production of Dihydroxyacetone from Crude Glycerol in Fed-Batch Cultures of
    Górska K; Garncarek Z
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Synthesis of pyrroloquinoline quinone by recombinant Gluconobacter oxydans].
    Ye R; Li F; Ding F; Zhao Z; Chen S; Yuan J
    Sheng Wu Gong Cheng Xue Bao; 2020 Jun; 36(6):1138-1149. PubMed ID: 32597063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of mGDH in Gluconobacter oxydans to improve D-xylonic acid production from corn stover hydrolysate.
    Mao X; Zhang B; Zhao C; Lin J; Wei D
    Microb Cell Fact; 2022 Mar; 21(1):35. PubMed ID: 35264166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation.
    Yuan J; Wu M; Lin J; Yang L
    BMC Biotechnol; 2016 May; 16(1):42. PubMed ID: 27189063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient aerobic fermentation of gluconic acid by high tension oxygen supply strategy with reusable Gluconobacter oxydans HG19 cells.
    Lian Z; Dai L; Zhang R; Liu Y; Zhou X; Xu Y
    Bioprocess Biosyst Eng; 2022 Nov; 45(11):1849-1855. PubMed ID: 36149483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The industrial versatility of Gluconobacter oxydans: current applications and future perspectives.
    da Silva GAR; Oliveira SSS; Lima SF; do Nascimento RP; Baptista ARS; Fiaux SB
    World J Microbiol Biotechnol; 2022 Jun; 38(8):134. PubMed ID: 35688964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined evolutionary and metabolic engineering improve 2-keto-L-gulonic acid production in Gluconobacter oxydans WSH-004.
    Li D; Liu L; Qin Z; Yu S; Zhou J
    Bioresour Technol; 2022 Jun; 354():127107. PubMed ID: 35381333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A facile process for adipic acid production in high yield by oxidation of 1,6-hexanediol using the resting cells of Gluconobacter oxydans.
    Pyo SH; Sayed M; Örn OE; Amorrortu Gallo J; Fernandez Ros N; Hatti-Kaul R
    Microb Cell Fact; 2022 Oct; 21(1):223. PubMed ID: 36307807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.