These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36416135)

  • 81. A Fast and Refined Cancer Regions Segmentation Framework in Whole-slide Breast Pathological Images.
    Guo Z; Liu H; Ni H; Wang X; Su M; Guo W; Wang K; Jiang T; Qian Y
    Sci Rep; 2019 Jan; 9(1):882. PubMed ID: 30696894
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Deep Semantic Segmentation of Kidney and Space-Occupying Lesion Area Based on SCNN and ResNet Models Combined with SIFT-Flow Algorithm.
    Xia KJ; Yin HS; Zhang YD
    J Med Syst; 2018 Nov; 43(1):2. PubMed ID: 30456668
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture.
    Attia M; Hossny M; Zhou H; Nahavandi S; Asadi H; Yazdabadi A
    Comput Methods Programs Biomed; 2019 Aug; 177():17-30. PubMed ID: 31319945
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted cross-entropy.
    Ben Naceur M; Akil M; Saouli R; Kachouri R
    Med Image Anal; 2020 Jul; 63():101692. PubMed ID: 32417714
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Registration-guided deep learning image segmentation for cone beam CT-based online adaptive radiotherapy.
    Ma L; Chi W; Morgan HE; Lin MH; Chen M; Sher D; Moon D; Vo DT; Avkshtol V; Lu W; Gu X
    Med Phys; 2022 Aug; 49(8):5304-5316. PubMed ID: 35460584
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Multi-scale feature similarity-based weakly supervised lymphoma segmentation in PET/CT images.
    Huang Z; Guo Y; Zhang N; Huang X; Decazes P; Becker S; Ruan S
    Comput Biol Med; 2022 Dec; 151(Pt A):106230. PubMed ID: 36306574
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Semi-Supervised Segmentation Framework for Gastrointestinal Lesion Diagnosis in Endoscopic Images.
    Lonseko ZM; Du W; Adjei PE; Luo C; Hu D; Gan T; Zhu L; Rao N
    J Pers Med; 2023 Jan; 13(1):. PubMed ID: 36675779
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Deep learning-based automatic segmentation of images in cardiac radiography: A promising challenge.
    Song Y; Ren S; Lu Y; Fu X; Wong KKL
    Comput Methods Programs Biomed; 2022 Jun; 220():106821. PubMed ID: 35487181
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Deepometry, a framework for applying supervised and weakly supervised deep learning to imaging cytometry.
    Doan M; Barnes C; McQuin C; Caicedo JC; Goodman A; Carpenter AE; Rees P
    Nat Protoc; 2021 Jul; 16(7):3572-3595. PubMed ID: 34145434
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Multi-atlas and unsupervised learning approach to perirectal space segmentation in CT images.
    Ghose S; Denham JW; Ebert MA; Kennedy A; Mitra J; Dowling JA
    Australas Phys Eng Sci Med; 2016 Dec; 39(4):933-941. PubMed ID: 27844331
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Weakly Supervised Learning of Placental Ultrasound Images with Residual Networks.
    Qi H; Collins S; Noble A
    Med Image Underst Anal Conf (2017); 2017; 723():98-108. PubMed ID: 31660542
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Iterative unsupervised domain adaptation for generalized cell detection from brightfield z-stacks.
    Liimatainen K; Kananen L; Latonen L; Ruusuvuori P
    BMC Bioinformatics; 2019 Feb; 20(1):80. PubMed ID: 30767778
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A weakly supervised deep learning approach for label-free imaging flow-cytometry-based blood diagnostics.
    Otesteanu CF; Ugrinic M; Holzner G; Chang YT; Fassnacht C; Guenova E; Stavrakis S; deMello A; Claassen M
    Cell Rep Methods; 2021 Oct; 1(6):100094. PubMed ID: 35474892
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Weakly-Supervised Detection of Bone Lesions in CT.
    Sheng T; Mathai TS; Shieh A; Summers RM
    Proc SPIE Int Soc Opt Eng; 2024 Feb; 12927():. PubMed ID: 38974478
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Weakly-Supervised Detection of Bone Lesions in CT.
    Sheng T; Mathai TS; Shieh A; Summers RM
    ArXiv; 2024 Jan; ():. PubMed ID: 38529078
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Artificial intelligence-assisted management of retinal detachment from ultra-widefield fundus images based on weakly-supervised approach.
    Li H; Cao J; You K; Zhang Y; Ye J
    Front Med (Lausanne); 2024; 11():1326004. PubMed ID: 38379556
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Automatic mapping of multiplexed social receptive fields by deep learning and GPU-accelerated 3D videography.
    Ebbesen CL; Froemke RC
    Nat Commun; 2022 Feb; 13(1):593. PubMed ID: 35105858
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Application of Nuclear Medicine Techniques in Musculoskeletal Infection: Current Trends and Future Prospects.
    Valero-Martínez C; Castillo-Morales V; Gómez-León N; Hernández-Pérez I; Vicente-Rabaneda EF; Uriarte M; Castañeda S
    J Clin Med; 2024 Feb; 13(4):. PubMed ID: 38398371
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Skeleton Segmentation on Bone Scintigraphy for BSI Computation.
    Yu PN; Lai YC; Chen YY; Cheng DC
    Diagnostics (Basel); 2023 Jul; 13(13):. PubMed ID: 37443695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.