These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36416153)

  • 1. Total synthesis of Myxoprincomide, a secondary metabolite from
    Kohr M; Walt C; Dastbaz J; Müller R; Kazmaier U
    Org Biomol Chem; 2022 Dec; 20(48):9609-9612. PubMed ID: 36416153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myxoprincomide: a natural product from Myxococcus xanthus discovered by comprehensive analysis of the secondary metabolome.
    Cortina NS; Krug D; Plaza A; Revermann O; Müller R
    Angew Chem Int Ed Engl; 2012 Jan; 51(3):811-6. PubMed ID: 22162209
    [No Abstract]   [Full Text] [Related]  

  • 3. Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity.
    Krug D; Zurek G; Revermann O; Vos M; Velicer GJ; Müller R
    Appl Environ Microbiol; 2008 May; 74(10):3058-68. PubMed ID: 18378661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Pseudochelin Production in Myxococcus xanthus.
    Korp J; Winand L; Sester A; Nett M
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myxococcus xanthus truncated globin HbO: in silico analysis and functional characterization.
    Singh SK; Kaur R; Kumar A; Kaur R
    Mol Biol Rep; 2019 Apr; 46(2):2101-2110. PubMed ID: 30729391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutants defective in the production of encapsulin show a tan-phase-locked phenotype in Myxococcus xanthus.
    Kim D; Choi J; Lee S; Hyun H; Lee K; Cho K
    J Microbiol; 2019 Sep; 57(9):795-802. PubMed ID: 31187417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Straight-chain fatty acids are dispensable in the myxobacterium Myxococcus xanthus for vegetative growth and fruiting body formation.
    Bode HB; Ring MW; Kaiser D; David AC; Kroppenstedt RM; Schwär G
    J Bacteriol; 2006 Aug; 188(15):5632-4. PubMed ID: 16855254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation.
    Meiser P; Bode HB; Müller R
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):19128-33. PubMed ID: 17148609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Functions Affecting Predator-Prey Interactions between Myxococcus xanthus and Bacillus subtilis.
    Müller S; Strack SN; Ryan SE; Shawgo M; Walling A; Harris S; Chambers C; Boddicker J; Kirby JR
    J Bacteriol; 2016 Dec; 198(24):3335-3344. PubMed ID: 27698086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LC-MS/MS profiling-based secondary metabolite screening of Myxococcus xanthus.
    Kim J; Choi JN; Kim P; Sok DE; Nam SW; Lee CH
    J Microbiol Biotechnol; 2009 Jan; 19(1):51-4. PubMed ID: 19190408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus.
    Dickschat JS; Wenzel SC; Bode HB; Müller R; Schulz S
    Chembiochem; 2004 Jun; 5(6):778-87. PubMed ID: 15174160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutritional requirements for vegetative growth of Myxococcus xanthus.
    DWORKIN M
    J Bacteriol; 1962 Aug; 84(2):250-7. PubMed ID: 13888810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Chemical Ecology of Predatory Soil Bacteria.
    Findlay BL
    ACS Chem Biol; 2016 Jun; 11(6):1502-10. PubMed ID: 27035738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor.
    Pérez J; Muñoz-Dorado J; Braña AF; Shimkets LJ; Sevillano L; Santamaría RI
    Microb Biotechnol; 2011 Mar; 4(2):175-83. PubMed ID: 21342463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intercellular signaling during fruiting-body development of Myxococcus xanthus.
    Shimkets LJ
    Annu Rev Microbiol; 1999; 53():525-49. PubMed ID: 10547700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutasynthesis of Physostigmines in
    Winand L; Schneider P; Kruth S; Greven NJ; Hiller W; Kaiser M; Pietruszka J; Nett M
    Org Lett; 2021 Aug; 23(16):6563-6567. PubMed ID: 34355569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of transcriptional mode on promoter substitution and tandem engineering for the production of epothilones in Myxococcus xanthus.
    Yue XJ; Cui XW; Zhang Z; Hu WF; Li ZF; Zhang YM; Li YZ
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5599-5610. PubMed ID: 29705958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal distribution of chemical signatures exhibited by Myxococcus xanthus in response to metabolic conditions.
    Do H; Madukoma CS; Sundaresan V; Shrout JD; Hoffman AJ; Bohn PW
    Anal Bioanal Chem; 2022 Feb; 414(4):1691-1698. PubMed ID: 34850244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADP-ribosylation by the extracellular fibrils of Myxococcus xanthus.
    Hildebrandt K; Eastman D; Dworkin M
    Mol Microbiol; 1997 Jan; 23(2):231-5. PubMed ID: 9044257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. devI is an evolutionarily young negative regulator of Myxococcus xanthus development.
    Rajagopalan R; Wielgoss S; Lippert G; Velicer GJ; Kroos L
    J Bacteriol; 2015 Apr; 197(7):1249-62. PubMed ID: 25645563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.