These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36416411)

  • 1. Phenotyping single-cell motility in microfluidic confinement.
    Bentley SA; Laeverenz-Schlogelhofer H; Anagnostidis V; Cammann J; Mazza MG; Gielen F; Wan KY
    Elife; 2022 Nov; 11():. PubMed ID: 36416411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ciliary contact interactions dominate surface scattering of swimming eukaryotes.
    Kantsler V; Dunkel J; Polin M; Goldstein RE
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1187-92. PubMed ID: 23297240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonemal motility in Chlamydomonas.
    Wakabayashi K; Kamiya R
    Methods Cell Biol; 2015; 127():387-402. PubMed ID: 25837401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rebound and scattering of motile
    Théry A; Wang Y; Dvoriashyna M; Eloy C; Elias F; Lauga E
    Soft Matter; 2021 May; 17(18):4857-4873. PubMed ID: 33890590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay of surface interaction and magnetic torque in single-cell motion of magnetotactic bacteria in microfluidic confinement.
    Codutti A; Charsooghi MA; Cerdá-Doñate E; Taïeb HM; Robinson T; Faivre D; Klumpp S
    Elife; 2022 Jul; 11():. PubMed ID: 35852850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A TRP conductance modulates repolarization after sensory-dependent depolarization in Chlamydomonas reinhardtii.
    Arias-Darraz L; Colenso CK; Veliz LA; Vivar JP; Cardenas S; Brauchi S
    Plant Signal Behav; 2015; 10(8):e1052924. PubMed ID: 26186626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams.
    Tainio O; Sohrabi F; Janarek N; Koivisto J; Puisto A; Viitanen L; Timonen JVI; Alava M
    Soft Matter; 2021 Jan; 17(1):145-152. PubMed ID: 33155584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Platforms Designed for Morphological and Photosynthetic Investigations of
    Széles E; Nagy K; Ábrahám Á; Kovács S; Podmaniczki A; Nagy V; Kovács L; Galajda P; Tóth SZ
    Cells; 2022 Jan; 11(2):. PubMed ID: 35053401
    [No Abstract]   [Full Text] [Related]  

  • 9. Dynamic force measurements on swimming
    Böddeker TJ; Karpitschka S; Kreis CT; Magdelaine Q; Bäumchen O
    J R Soc Interface; 2020 Jan; 17(162):20190580. PubMed ID: 31937233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of Sticky Glycoproteins from Chlamydomonas Flagella During Microsphere Translocation on the Surface Membrane.
    Kamiya R; Shiba K; Inaba K; Kato-Minoura T
    Zoolog Sci; 2018 Aug; 35(4):299-305. PubMed ID: 30079834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative high-throughput assays for flagella-based motility in chlamydomonas using plate-well image analysis and transmission correlation spectroscopy.
    Marshall WF
    J Biomol Screen; 2009 Feb; 14(2):133-41. PubMed ID: 19196701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput phenotyping of chlamydomonas swimming mutants based on nanoscale video analysis.
    Fujita S; Matsuo T; Ishiura M; Kikkawa M
    Biophys J; 2014 Jul; 107(2):336-345. PubMed ID: 25028875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii.
    Silflow CD; Lefebvre PA
    Plant Physiol; 2001 Dec; 127(4):1500-7. PubMed ID: 11743094
    [No Abstract]   [Full Text] [Related]  

  • 14. Resistive force theory and wave dynamics in swimming flagellar apparatus isolated from
    Goli Pozveh S; Bae AJ; Gholami A
    Soft Matter; 2021 Feb; 17(6):1601-1613. PubMed ID: 33355581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential dynamic microscopy: a high-throughput method for characterizing the motility of microorganisms.
    Martinez VA; Besseling R; Croze OA; Tailleur J; Reufer M; Schwarz-Linek J; Wilson LG; Bees MA; Poon WC
    Biophys J; 2012 Oct; 103(8):1637-47. PubMed ID: 23083706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergent probability fluxes in confined microbial navigation.
    Cammann J; Schwarzendahl FJ; Ostapenko T; Lavrentovich D; Bäumchen O; Mazza MG
    Proc Natl Acad Sci U S A; 2021 Sep; 118(39):. PubMed ID: 34556571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong confinement of active microalgae leads to inversion of vortex flow and enhanced mixing.
    Mondal D; Prabhune AG; Ramaswamy S; Sharma P
    Elife; 2021 Nov; 10():. PubMed ID: 34806977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed movements of ciliary and flagellar membrane components: a review.
    Bloodgood RA
    Biol Cell; 1992; 76(3):291-301. PubMed ID: 1305476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flagellar quiescence in Chlamydomonas: Characterization and defective quiescence in cells carrying sup-pf-1 and sup-pf-2 outer dynein arm mutations.
    Mitchell BF; Grulich LE; Mader MM
    Cell Motil Cytoskeleton; 2004 Mar; 57(3):186-96. PubMed ID: 14743351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer-Assisted Tracking of
    Folcik AM; Haire T; Cutshaw K; Riddle M; Shola C; Nassani S; Rice P; Richardson B; Shah P; Nazamoddini-Kachouie N; Palmer A
    Front Plant Sci; 2019; 10():1616. PubMed ID: 32076424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.