BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36416411)

  • 1. Phenotyping single-cell motility in microfluidic confinement.
    Bentley SA; Laeverenz-Schlogelhofer H; Anagnostidis V; Cammann J; Mazza MG; Gielen F; Wan KY
    Elife; 2022 Nov; 11():. PubMed ID: 36416411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ciliary contact interactions dominate surface scattering of swimming eukaryotes.
    Kantsler V; Dunkel J; Polin M; Goldstein RE
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1187-92. PubMed ID: 23297240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonemal motility in Chlamydomonas.
    Wakabayashi K; Kamiya R
    Methods Cell Biol; 2015; 127():387-402. PubMed ID: 25837401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rebound and scattering of motile
    Théry A; Wang Y; Dvoriashyna M; Eloy C; Elias F; Lauga E
    Soft Matter; 2021 May; 17(18):4857-4873. PubMed ID: 33890590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A TRP conductance modulates repolarization after sensory-dependent depolarization in Chlamydomonas reinhardtii.
    Arias-Darraz L; Colenso CK; Veliz LA; Vivar JP; Cardenas S; Brauchi S
    Plant Signal Behav; 2015; 10(8):e1052924. PubMed ID: 26186626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlamydomonas reinhardtii swimming in the Plateau borders of 2D foams.
    Tainio O; Sohrabi F; Janarek N; Koivisto J; Puisto A; Viitanen L; Timonen JVI; Alava M
    Soft Matter; 2021 Jan; 17(1):145-152. PubMed ID: 33155584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay of surface interaction and magnetic torque in single-cell motion of magnetotactic bacteria in microfluidic confinement.
    Codutti A; Charsooghi MA; Cerdá-Doñate E; Taïeb HM; Robinson T; Faivre D; Klumpp S
    Elife; 2022 Jul; 11():. PubMed ID: 35852850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic force measurements on swimming
    Böddeker TJ; Karpitschka S; Kreis CT; Magdelaine Q; Bäumchen O
    J R Soc Interface; 2020 Jan; 17(162):20190580. PubMed ID: 31937233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii.
    Silflow CD; Lefebvre PA
    Plant Physiol; 2001 Dec; 127(4):1500-7. PubMed ID: 11743094
    [No Abstract]   [Full Text] [Related]  

  • 10. Release of Sticky Glycoproteins from Chlamydomonas Flagella During Microsphere Translocation on the Surface Membrane.
    Kamiya R; Shiba K; Inaba K; Kato-Minoura T
    Zoolog Sci; 2018 Aug; 35(4):299-305. PubMed ID: 30079834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Platforms Designed for Morphological and Photosynthetic Investigations of
    Széles E; Nagy K; Ábrahám Á; Kovács S; Podmaniczki A; Nagy V; Kovács L; Galajda P; Tóth SZ
    Cells; 2022 Jan; 11(2):. PubMed ID: 35053401
    [No Abstract]   [Full Text] [Related]  

  • 12. High-throughput phenotyping of chlamydomonas swimming mutants based on nanoscale video analysis.
    Fujita S; Matsuo T; Ishiura M; Kikkawa M
    Biophys J; 2014 Jul; 107(2):336-345. PubMed ID: 25028875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative high-throughput assays for flagella-based motility in chlamydomonas using plate-well image analysis and transmission correlation spectroscopy.
    Marshall WF
    J Biomol Screen; 2009 Feb; 14(2):133-41. PubMed ID: 19196701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong confinement of active microalgae leads to inversion of vortex flow and enhanced mixing.
    Mondal D; Prabhune AG; Ramaswamy S; Sharma P
    Elife; 2021 Nov; 10():. PubMed ID: 34806977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergent probability fluxes in confined microbial navigation.
    Cammann J; Schwarzendahl FJ; Ostapenko T; Lavrentovich D; Bäumchen O; Mazza MG
    Proc Natl Acad Sci U S A; 2021 Sep; 118(39):. PubMed ID: 34556571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential dynamic microscopy: a high-throughput method for characterizing the motility of microorganisms.
    Martinez VA; Besseling R; Croze OA; Tailleur J; Reufer M; Schwarz-Linek J; Wilson LG; Bees MA; Poon WC
    Biophys J; 2012 Oct; 103(8):1637-47. PubMed ID: 23083706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-Assisted Tracking of
    Folcik AM; Haire T; Cutshaw K; Riddle M; Shola C; Nassani S; Rice P; Richardson B; Shah P; Nazamoddini-Kachouie N; Palmer A
    Front Plant Sci; 2019; 10():1616. PubMed ID: 32076424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flagellar quiescence in Chlamydomonas: Characterization and defective quiescence in cells carrying sup-pf-1 and sup-pf-2 outer dynein arm mutations.
    Mitchell BF; Grulich LE; Mader MM
    Cell Motil Cytoskeleton; 2004 Mar; 57(3):186-96. PubMed ID: 14743351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed movements of ciliary and flagellar membrane components: a review.
    Bloodgood RA
    Biol Cell; 1992; 76(3):291-301. PubMed ID: 1305476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electro-optic monitor of the behavior of Chlamydomonas reinhardtii cilia.
    Josef K; Saranak J; Foster KW
    Cell Motil Cytoskeleton; 2005 Jun; 61(2):83-96. PubMed ID: 15838839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.