BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36416469)

  • 1. Molecular self-assembled monolayers anomalously enhance thermal conductance across polymer-semiconductor interfaces.
    He J; Tao L; Xian W; Arbaugh T; Li Y
    Nanoscale; 2022 Dec; 14(47):17681-17693. PubMed ID: 36416469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the Thermal Conductance of Polymer and Sapphire Interface via Self-Assembled Monolayer.
    Zheng K; Sun F; Zhu J; Ma Y; Li X; Tang D; Wang F; Wang X
    ACS Nano; 2016 Aug; 10(8):7792-8. PubMed ID: 27501117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembled Monolayers for the Polymer/Semiconductor Interface with Improved Interfacial Thermal Management.
    Lu J; Yuan K; Sun F; Zheng K; Zhang Z; Zhu J; Wang X; Zhang X; Zhuang Y; Ma Y; Cao X; Zhang J; Tang D
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42708-42714. PubMed ID: 31625728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces.
    Zhang L; Liu L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28949-28958. PubMed ID: 28766936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unstructured Self-Assembled Molecular Lamella Induces Ultrafast Thermal Transfer through a Cathode/Separator Interphase in Lithium-Ion Batteries.
    He J; Xian W; Tao L; Corrigan P; Li Y
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):56268-56279. PubMed ID: 36508577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular dynamics study on heat transfer characteristics at the interfaces of alkanethiolate self-assembled monolayer and organic solvent.
    Kikugawa G; Ohara T; Kawaguchi T; Torigoe E; Hagiwara Y; Matsumoto Y
    J Chem Phys; 2009 Feb; 130(7):074706. PubMed ID: 19239308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement across Solid-Water Interfaces.
    Huang D; Ma R; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2018 Aug; 10(33):28159-28165. PubMed ID: 30056700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Fin Effect from Heterogeneous Self-Assembled Monolayer Enhances Thermal Conductance across Hard-Soft Interfaces.
    Wei X; Zhang T; Luo T
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33740-33748. PubMed ID: 28885818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchically hydrogen-bonded graphene/polymer interfaces with drastically enhanced interfacial thermal conductance.
    Zhang L; Liu L
    Nanoscale; 2019 Feb; 11(8):3656-3664. PubMed ID: 30741290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Interfacial Thermal Conductance between Polystyrene and Sapphire by Controlling the Interfacial Adhesion.
    Zheng K; Sun F; Tian X; Zhu J; Ma Y; Tang D; Wang F
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23644-9. PubMed ID: 26451742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Structure Effect of a Self-Assembled Monolayer on Thermal Resistance across an Interface.
    Song L; Zhang Y; Yang W; Tan J; Cheng L
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic Comparison of Thermal Transport at Organic-Inorganic and Organic-Hybrid Interfaces Using CsPbBr
    Diroll BT; Mannodi-Kanakkithodi A; Chan MKY; Schaller RD
    Nano Lett; 2019 Nov; 19(11):8155-8160. PubMed ID: 31603685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of chemical bonding on heat transport across interfaces.
    Losego MD; Grady ME; Sottos NR; Cahill DG; Braun PV
    Nat Mater; 2012 Apr; 11(6):502-6. PubMed ID: 22522593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting thermal energy transport across the interface between phase change materials and metals via self-assembled monolayers.
    Shan ZY; An M; Zhang X; Zhang H; Ma WG
    J Phys Condens Matter; 2024 May; 36(33):. PubMed ID: 38718812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of interfacial thermal conductance between metal and semiconductor.
    Wu K; Zhang L; Wang D; Li F; Zhang P; Sang L; Liao M; Tang K; Ye J; Gu S
    Sci Rep; 2022 Nov; 12(1):19907. PubMed ID: 36402811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast nonlinear coherent vibrational sum-frequency spectroscopy methods to study thermal conductance of molecules at interfaces.
    Carter JA; Wang Z; Dlott DD
    Acc Chem Res; 2009 Sep; 42(9):1343-51. PubMed ID: 19388671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-scale probing of heterointerface phonon bridges in nitride semiconductor.
    Li YH; Qi RS; Shi RC; Hu JN; Liu ZT; Sun YW; Li MQ; Li N; Song CL; Wang L; Hao ZB; Luo Y; Xue QK; Ma XC; Gao P
    Proc Natl Acad Sci U S A; 2022 Feb; 119(8):. PubMed ID: 35181607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concept of Embedded Dipoles as a Versatile Tool for Surface Engineering.
    Zojer E; Terfort A; Zharnikov M
    Acc Chem Res; 2022 Jul; 55(13):1857-1867. PubMed ID: 35658405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Hydrogen Bonds in Thermal Transport across Hard/Soft Material Interfaces.
    Zhang T; Gans-Forrest AR; Lee E; Zhang X; Qu C; Pang Y; Sun F; Luo T
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33326-33334. PubMed ID: 27934170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interfacial thermal conductance spectrum in nonequilibrium molecular dynamics simulations considering anharmonicity, asymmetry and quantum effects.
    Xu Y; Yang L; Zhou Y
    Phys Chem Chem Phys; 2022 Oct; 24(39):24503-24513. PubMed ID: 36193724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.