BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36416528)

  • 1. A general approach for stabilizing nanobodies for intracellular expression.
    Dingus JG; Tang JCY; Amamoto R; Wallick GK; Cepko CL
    Elife; 2022 Nov; 11():. PubMed ID: 36416528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel silk fibroin protein-based fusion system for enhancing the expression of nanobodies in Escherichia coli.
    Yu J; Guo Y; Gu Y; Fan X; Li F; Song H; Nian R; Liu W
    Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):1967-1977. PubMed ID: 35243528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and Computational Studies of the SARS-CoV-2 Spike Protein Binding Mechanisms with Nanobodies: From Structure and Dynamics to Avidity-Driven Nanobody Engineering.
    Verkhivker G
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient protocol towards site-specifically clickable nanobodies in high yield: cytoplasmic expression in Escherichia coli combined with intein-mediated protein ligation.
    Ta DT; Redeker ES; Billen B; Reekmans G; Sikulu J; Noben JP; Guedens W; Adriaensens P
    Protein Eng Des Sel; 2015 Oct; 28(10):351-63. PubMed ID: 26243885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research Progress and Applications of Multivalent, Multispecific and Modified Nanobodies for Disease Treatment.
    Wang J; Kang G; Yuan H; Cao X; Huang H; de Marco A
    Front Immunol; 2021; 12():838082. PubMed ID: 35116045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of Functional Intracellular Nanobodies.
    Woods J
    SLAS Discov; 2019 Aug; 24(7):703-713. PubMed ID: 31173539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanobody(R)-based chromatin immunoprecipitation/micro-array analysis for genome-wide identification of transcription factor DNA binding sites.
    Nguyen-Duc T; Peeters E; Muyldermans S; Charlier D; Hassanzadeh-Ghassabeh G
    Nucleic Acids Res; 2013 Mar; 41(5):e59. PubMed ID: 23275538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoplasmic Production of Nanobodies and Nanobody-Based Reagents by Co-Expression of Sulfhydryl Oxidase and DsbC Isomerase.
    de Marco A
    Methods Mol Biol; 2022; 2446():145-157. PubMed ID: 35157272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting sequence and stability information for directing nanobody stability engineering.
    Kunz P; Flock T; Soler N; Zaiss M; Vincke C; Sterckx Y; Kastelic D; Muyldermans S; Hoheisel JD
    Biochim Biophys Acta Gen Subj; 2017 Sep; 1861(9):2196-2205. PubMed ID: 28642127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis.
    Van Impe K; Bethuyne J; Cool S; Impens F; Ruano-Gallego D; De Wever O; Vanloo B; Van Troys M; Lambein K; Boucherie C; Martens E; Zwaenepoel O; Hassanzadeh-Ghassabeh G; Vandekerckhove J; Gevaert K; Fernández LÁ; Sanders NN; Gettemans J
    Breast Cancer Res; 2013 Dec; 15(6):R116. PubMed ID: 24330716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanobody stability engineering by employing the ΔTm shift; a comparison with apparent rate constants of heat-induced aggregation.
    Kunz P; Ortale A; Mücke N; Zinner K; Hoheisel JD
    Protein Eng Des Sel; 2019 Dec; 32(5):241-249. PubMed ID: 31340035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric Determinants of the SARS-CoV-2 Spike Protein Binding with Nanobodies: Examining Mechanisms of Mutational Escape and Sensitivity of the Omicron Variant.
    Verkhivker G
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanobodies as molecular imaging probes.
    Barakat S; Berksöz M; Zahedimaram P; Piepoli S; Erman B
    Free Radic Biol Med; 2022 Mar; 182():260-275. PubMed ID: 35240292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Silico Investigation of Signal Peptide Sequences to Enhance Secretion of CD44 Nanobodies Expressed in Escherichia coli.
    Kavousipour S; Mohammadi S; Eftekhar E; Barazesh M; Morowvat MH
    Curr Pharm Biotechnol; 2021; 22(9):1192-1205. PubMed ID: 33045964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli.
    Oyen D; Wechselberger R; Srinivasan V; Steyaert J; Barlow JN
    Biochim Biophys Acta; 2013 Oct; 1834(10):2147-57. PubMed ID: 23911607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and Application of Nanobodies for Membrane Protein Structural Biology.
    Brunner JD; Schenck S
    Methods Mol Biol; 2020; 2127():167-184. PubMed ID: 32112322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of nanobodies in plant science and biotechnology.
    Wang W; Yuan J; Jiang C
    Plant Mol Biol; 2021 Jan; 105(1-2):43-53. PubMed ID: 33037986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanobody click chemistry for convenient site-specific fluorescent labelling, single step immunocytochemistry and delivery into living cells by photoporation and live cell imaging.
    Hebbrecht T; Liu J; Zwaenepoel O; Boddin G; Van Leene C; Decoene K; Madder A; Braeckmans K; Gettemans J
    N Biotechnol; 2020 Nov; 59():33-43. PubMed ID: 32659511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fenobody: A Ferritin-Displayed Nanobody with High Apparent Affinity and Half-Life Extension.
    Fan K; Jiang B; Guan Z; He J; Yang D; Xie N; Nie G; Xie C; Yan X
    Anal Chem; 2018 May; 90(9):5671-5677. PubMed ID: 29634235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinant expression of nanobodies and nanobody-derived immunoreagents.
    de Marco A
    Protein Expr Purif; 2020 Aug; 172():105645. PubMed ID: 32289357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.