BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 36416596)

  • 21. Networks that Govern Cardiomyocyte Proliferation to Facilitate Repair of the Injured Mammalian Heart.
    Garry DJ; Zhang JJ; Larson TA; Sadek HA; Garry MG
    Methodist Debakey Cardiovasc J; 2023; 19(5):16-25. PubMed ID: 38028968
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Agrin-Mediated Cardiac Regeneration: Some Open Questions.
    Bigotti MG; Skeffington KL; Jones FP; Caputo M; Brancaccio A
    Front Bioeng Biotechnol; 2020; 8():594. PubMed ID: 32612983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of miRNA regulation in fetal cardiomyocytes, cardiac maturation and the risk of heart disease in adults.
    Lock MC; Tellam RL; Botting KJ; Wang KCW; Selvanayagam JB; Brooks DA; Seed M; Morrison JL
    J Physiol; 2018 Dec; 596(23):5625-5640. PubMed ID: 29785790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury.
    Tao G; Kahr PC; Morikawa Y; Zhang M; Rahmani M; Heallen TR; Li L; Sun Z; Olson EN; Amendt BA; Martin JF
    Nature; 2016 Jun; 534(7605):119-23. PubMed ID: 27251288
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The FGF-AKT pathway is necessary for cardiomyocyte survival for heart regeneration in zebrafish.
    Tahara N; Akiyama R; Wang J; Kawakami H; Bessho Y; Kawakami Y
    Dev Biol; 2021 Apr; 472():30-37. PubMed ID: 33444612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
    Crippa S; Nemir M; Ounzain S; Ibberson M; Berthonneche C; Sarre A; Boisset G; Maison D; Harshman K; Xenarios I; Diviani D; Schorderet D; Pedrazzini T
    Cardiovasc Res; 2016 May; 110(1):73-84. PubMed ID: 26857418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Roadmap to Heart Regeneration Through Conserved Mechanisms in Zebrafish and Mammals.
    Brezitski KD; Goff AW; DeBenedittis P; Karra R
    Curr Cardiol Rep; 2021 Mar; 23(4):29. PubMed ID: 33655359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Foxm1 regulates cardiomyocyte proliferation in adult zebrafish after cardiac injury.
    Zuppo DA; Missinato MA; Santana-Santos L; Li G; Benos PV; Tsang M
    Development; 2023 Mar; 150(6):. PubMed ID: 36846912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regulates Cardiomyocyte Proliferation and Cardiac Repair.
    Ponnusamy M; Liu F; Zhang YH; Li RB; Zhai M; Liu F; Zhou LY; Liu CY; Yan KW; Dong YH; Wang M; Qian LL; Shan C; Xu S; Wang Q; Zhang YH; Li PF; Zhang J; Wang K
    Circulation; 2019 Jun; 139(23):2668-2684. PubMed ID: 30832495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent advancements in understanding endogenous heart regeneration-insights from adult zebrafish and neonatal mice.
    Rubin N; Harrison MR; Krainock M; Kim R; Lien CL
    Semin Cell Dev Biol; 2016 Oct; 58():34-40. PubMed ID: 27132022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of β1-AR/Gαs signaling promotes cardiomyocyte proliferation in juvenile mice through activation of RhoA-YAP axis.
    Sakabe M; Thompson M; Chen N; Verba M; Hassan A; Lu R; Xin M
    Elife; 2022 Dec; 11():. PubMed ID: 36479975
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Vegfc-Emilin2a-Cxcl8a Signaling Axis Required for Zebrafish Cardiac Regeneration.
    El-Sammak H; Yang B; Guenther S; Chen W; Marín-Juez R; Stainier DYR
    Circ Res; 2022 Apr; 130(7):1014-1029. PubMed ID: 35264012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Telomerase Is Essential for Zebrafish Heart Regeneration.
    Bednarek D; González-Rosa JM; Guzmán-Martínez G; Gutiérrez-Gutiérrez Ó; Aguado T; Sánchez-Ferrer C; Marques IJ; Galardi-Castilla M; de Diego I; Gómez MJ; Cortés A; Zapata A; Jiménez-Borreguero LJ; Mercader N; Flores I
    Cell Rep; 2015 Sep; 12(10):1691-703. PubMed ID: 26321646
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Sun J; Peterson EA; Wang AZ; Ou J; Smith KE; Poss KD; Wang J
    Circulation; 2022 Jul; 146(1):48-63. PubMed ID: 35652354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wnt/β-catenin signaling in heart regeneration.
    Ozhan G; Weidinger G
    Cell Regen; 2015; 4(1):3. PubMed ID: 26157574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decellularized neonatal cardiac extracellular matrix prevents widespread ventricular remodeling in adult mammals after myocardial infarction.
    Wang Z; Long DW; Huang Y; Chen WCW; Kim K; Wang Y
    Acta Biomater; 2019 Mar; 87():140-151. PubMed ID: 30710713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation.
    Jopling C; Sleep E; Raya M; Martí M; Raya A; Izpisúa Belmonte JC
    Nature; 2010 Mar; 464(7288):606-9. PubMed ID: 20336145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wnt Signaling in Heart Development and Regeneration.
    Li D; Sun J; Zhong TP
    Curr Cardiol Rep; 2022 Oct; 24(10):1425-1438. PubMed ID: 35925512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration.
    Missinato MA; Saydmohammed M; Zuppo DA; Rao KS; Opie GW; Kühn B; Tsang M
    Development; 2018 Mar; 145(5):. PubMed ID: 29444893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neonatal injury models: integral tools to decipher the molecular basis of cardiac regeneration.
    Costa A; Cushman S; Haubner BJ; Derda AA; Thum T; Bär C
    Basic Res Cardiol; 2022 May; 117(1):26. PubMed ID: 35503383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.