These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 36416764)
1. Transcriptome-wide association study and eQTL colocalization identify potentially causal genes responsible for human bone mineral density GWAS associations. Al-Barghouthi BM; Rosenow WT; Du KP; Heo J; Maynard R; Mesner L; Calabrese G; Nakasone A; Senwar B; Gerstenfeld L; Larner J; Ferguson V; Ackert-Bicknell C; Morgan E; Brautigan D; Farber CR Elife; 2022 Nov; 11():. PubMed ID: 36416764 [TBL] [Abstract][Full Text] [Related]
2. Identification of Known and Novel Long Noncoding RNAs Potentially Responsible for the Effects of Bone Mineral Density (BMD) Genomewide Association Study (GWAS) Loci. Abood A; Mesner L; Rosenow W; Al-Barghouthi BM; Horowitz N; Morgan EF; Gerstenfeld LC; Farber CR J Bone Miner Res; 2022 Aug; 37(8):1500-1510. PubMed ID: 35695880 [TBL] [Abstract][Full Text] [Related]
3. Using "-omics" Data to Inform Genome-wide Association Studies (GWASs) in the Osteoporosis Field. Abood A; Farber CR Curr Osteoporos Rep; 2021 Aug; 19(4):369-380. PubMed ID: 34125409 [TBL] [Abstract][Full Text] [Related]
4. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia. Guo S; Yang J Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563 [TBL] [Abstract][Full Text] [Related]
5. Leveraging lung tissue transcriptome to uncover candidate causal genes in COPD genetic associations. Lamontagne M; Bérubé JC; Obeidat M; Cho MH; Hobbs BD; Sakornsakolpat P; de Jong K; Boezen HM; ; Nickle D; Hao K; Timens W; van den Berge M; Joubert P; Laviolette M; Sin DD; Paré PD; Bossé Y Hum Mol Genet; 2018 May; 27(10):1819-1829. PubMed ID: 29547942 [TBL] [Abstract][Full Text] [Related]
6. Statistical power of transcriptome-wide association studies. He R; Xue H; Pan W; Genet Epidemiol; 2022 Dec; 46(8):572-588. PubMed ID: 35766062 [TBL] [Abstract][Full Text] [Related]
7. Integration of summary data from GWAS and eQTL studies identified novel causal BMD genes with functional predictions. Meng XH; Chen XD; Greenbaum J; Zeng Q; You SL; Xiao HM; Tan LJ; Deng HW Bone; 2018 Aug; 113():41-48. PubMed ID: 29763751 [TBL] [Abstract][Full Text] [Related]
8. Expression Quantitative Trait Locus Study of Bone Mineral Density GWAS Variants in Human Osteoclasts. Mullin BH; Zhu K; Xu J; Brown SJ; Mullin S; Tickner J; Pavlos NJ; Dudbridge F; Walsh JP; Wilson SG J Bone Miner Res; 2018 Jun; 33(6):1044-1051. PubMed ID: 29473973 [TBL] [Abstract][Full Text] [Related]
9. Probabilistic integration of transcriptome-wide association studies and colocalization analysis identifies key molecular pathways of complex traits. Okamoto J; Wang L; Yin X; Luca F; Pique-Regi R; Helms A; Im HK; Morrison J; Wen X Am J Hum Genet; 2023 Jan; 110(1):44-57. PubMed ID: 36608684 [TBL] [Abstract][Full Text] [Related]
10. Integrating transcriptome-wide association study and mRNA expression profiling identifies novel genes associated with bone mineral density. Ma M; Huang DG; Liang X; Zhang L; Cheng S; Cheng B; Qi X; Li P; Du Y; Liu L; Zhao Y; Ding M; Wen Y; Guo X; Zhang F Osteoporos Int; 2019 Jul; 30(7):1521-1528. PubMed ID: 30993394 [TBL] [Abstract][Full Text] [Related]
11. Finding the genes for fragile bones. Kague E Elife; 2022 Dec; 11():. PubMed ID: 36562688 [TBL] [Abstract][Full Text] [Related]
12. Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci. Ghaffar A; ; Nyholt DR Hum Genet; 2023 Aug; 142(8):1113-1137. PubMed ID: 37245199 [TBL] [Abstract][Full Text] [Related]
13. A Multi-tissue Transcriptome Analysis of Human Metabolites Guides Interpretability of Associations Based on Multi-SNP Models for Gene Expression. Ndungu A; Payne A; Torres JM; van de Bunt M; McCarthy MI Am J Hum Genet; 2020 Feb; 106(2):188-201. PubMed ID: 31978332 [TBL] [Abstract][Full Text] [Related]
14. Twelve New Genomic Loci Associated With Bone Mineral Density. Liu L; Zhao M; Xie ZG; Liu J; Peng HP; Pei YF; Sun HP; Zhang L Front Endocrinol (Lausanne); 2020; 11():243. PubMed ID: 32390946 [TBL] [Abstract][Full Text] [Related]
15. A transcriptome-wide association study to detect novel genes for volumetric bone mineral density. Liu A; Liu Y; Su KJ; Greenbaum J; Bai Y; Tian Q; Zhao LJ; Deng HW; Shen H Bone; 2021 Dec; 153():116106. PubMed ID: 34252604 [TBL] [Abstract][Full Text] [Related]
16. Integrating GWAS and Co-expression Network Data Identifies Bone Mineral Density Genes SPTBN1 and MARK3 and an Osteoblast Functional Module. Calabrese GM; Mesner LD; Stains JP; Tommasini SM; Horowitz MC; Rosen CJ; Farber CR Cell Syst; 2017 Jan; 4(1):46-59.e4. PubMed ID: 27866947 [TBL] [Abstract][Full Text] [Related]
17. Opportunities and challenges for transcriptome-wide association studies. Wainberg M; Sinnott-Armstrong N; Mancuso N; Barbeira AN; Knowles DA; Golan D; Ermel R; Ruusalepp A; Quertermous T; Hao K; Björkegren JLM; Im HK; Pasaniuc B; Rivas MA; Kundaje A Nat Genet; 2019 Apr; 51(4):592-599. PubMed ID: 30926968 [TBL] [Abstract][Full Text] [Related]
18. Identification of asthma-related genes using asthmatic blood eQTLs of Korean patients. Kim DJ; Lim JE; Jung HU; Chung JY; Baek EJ; Jung H; Kwon SY; Kim HK; Kang JO; Park K; Won S; Kim TB; Oh B BMC Med Genomics; 2023 Oct; 16(1):259. PubMed ID: 37875944 [TBL] [Abstract][Full Text] [Related]
19. Bayesian Genome-wide TWAS Method to Leverage both cis- and trans-eQTL Information through Summary Statistics. Luningham JM; Chen J; Tang S; De Jager PL; Bennett DA; Buchman AS; Yang J Am J Hum Genet; 2020 Oct; 107(4):714-726. PubMed ID: 32961112 [TBL] [Abstract][Full Text] [Related]
20. Integrative genomics analysis of eQTL and GWAS summary data identifies PPP1CB as a novel bone mineral density risk genes. Zhai Y; Yu L; Shao Y; Wang J Biosci Rep; 2020 Apr; 40(4):. PubMed ID: 32266926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]