These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36417499)

  • 1. A gyroscope-free visual-inertial flight control and wind sensing system for 10-mg robots.
    Fuller S; Yu Z; Talwekar YP
    Sci Robot; 2022 Nov; 7(72):eabq8184. PubMed ID: 36417499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli.
    Fuller SB; Karpelson M; Censi A; Ma KY; Wood RJ
    J R Soc Interface; 2014 Aug; 11(97):20140281. PubMed ID: 24942846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae.
    Fuller SB; Straw AD; Peek MY; Murray RM; Dickinson MH
    Proc Natl Acad Sci U S A; 2014 Apr; 111(13):E1182-91. PubMed ID: 24639532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled flight of a biologically inspired, insect-scale robot.
    Ma KY; Chirarattananon P; Fuller SB; Wood RJ
    Science; 2013 May; 340(6132):603-7. PubMed ID: 23641114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fruit fly scale robots can hover longer with flapping wings than with spinning wings.
    Hawkes EW; Lentink D
    J R Soc Interface; 2016 Oct; 13(123):. PubMed ID: 27707903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M; Kang CK
    Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled flight of a microrobot powered by soft artificial muscles.
    Chen Y; Zhao H; Mao J; Chirarattananon P; Helbling EF; Hyun NP; Clarke DR; Wood RJ
    Nature; 2019 Nov; 575(7782):324-329. PubMed ID: 31686057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation.
    Nguyen QV; Chan WL
    Bioinspir Biomim; 2018 Dec; 14(1):016015. PubMed ID: 30523879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How lovebirds maneuver through lateral gusts with minimal visual information.
    Quinn D; Kress D; Chang E; Stein A; Wegrzynski M; Lentink D
    Proc Natl Acad Sci U S A; 2019 Jul; 116(30):15033-15041. PubMed ID: 31289235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotational accelerations stabilize leading edge vortices on revolving fly wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lift and power requirements of hovering flight in Drosophila virilis.
    Sun M; Tang J
    J Exp Biol; 2002 Aug; 205(Pt 16):2413-27. PubMed ID: 12124366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bio-inspired flying robot sheds light on insect piloting abilities.
    Franceschini N; Ruffier F; Serres J
    Curr Biol; 2007 Feb; 17(4):329-35. PubMed ID: 17291757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight.
    Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D
    Elife; 2021 Mar; 10():. PubMed ID: 33724182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving bioinspired flapping wing hovering flight solutions on Mars via wing scaling.
    Bluman JE; Pohly JA; Sridhar MK; Kang CK; Landrum DB; Fahimi F; Aono H
    Bioinspir Biomim; 2018 Jun; 13(4):046010. PubMed ID: 29809163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wing rapid responses and aerodynamics of fruit flies during headwind gust perturbations.
    Gu M; Wu J; Zhang Y
    Bioinspir Biomim; 2020 Jul; 15(5):056001. PubMed ID: 32470950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avian-inspired energy-harvesting from atmospheric phenomena for small UAVs.
    Gavrilovic N; Mohamed A; Marino M; Watkins S; Moschetta JM; Benard E
    Bioinspir Biomim; 2018 Nov; 14(1):016006. PubMed ID: 30457112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for the stabilization of longitudinal forward flapping flight revealed using a dynamically-scaled robotic fly.
    Elzinga MJ; van Breugel F; Dickinson MH
    Bioinspir Biomim; 2014 Jun; 9(2):025001. PubMed ID: 24855029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.
    Ristroph L; Bergou AJ; Ristroph G; Coumes K; Berman GJ; Guckenheimer J; Wang ZJ; Cohen I
    Proc Natl Acad Sci U S A; 2010 Mar; 107(11):4820-4. PubMed ID: 20194789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.