These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 36417721)
1. Design, Modeling and Fabrication of a Novel Class V Flextensional Transducer: The Sea-Shell. Kaya MY; Alkoy S IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Jan; 70(1):64-71. PubMed ID: 36417721 [TBL] [Abstract][Full Text] [Related]
2. In-air and underwater performance and finite element analysis of a flextensional device having electrostrictive poly(vinylidene fluoride-trifluoroethylene) polymers as the active driving element. Xia F; Cheng ZY; Zhang Q IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jul; 50(7):932-40. PubMed ID: 12894926 [TBL] [Abstract][Full Text] [Related]
3. Research and Fabrication of Broadband Ring Flextensional Underwater Transducer. Hu J; Hong L; Yin L; Lan Y; Sun H; Guo R Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672243 [TBL] [Abstract][Full Text] [Related]
5. A Conformal Driving Class IV Flextensional Transducer. Zhou T; Lan Y; Zhang Q; Yuan J; Li S; Lu W Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29966344 [TBL] [Abstract][Full Text] [Related]
6. Effect of Concave Stave on Class I Barrel-Stave Flextensional Transducer. Teng D; Liu X; Gao F Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683309 [TBL] [Abstract][Full Text] [Related]
7. Lead zirconate titanate/poly(vinylidene fluoride-trifluoroethylene) 1-3 composites for ultrasonic transducer applications. Kwok KW; Chan HC; Choy CL IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):626-37. PubMed ID: 18238463 [TBL] [Abstract][Full Text] [Related]
8. A liquid column resonance transducer driven by Class IV flextensional transducer. Li S; Lan Y; Hong L J Acoust Soc Am; 2023 Jul; 154(1):401-410. PubMed ID: 37470758 [TBL] [Abstract][Full Text] [Related]
9. Design and Fabrication of an Underwater Transducer Based on the Shear Vibration Mode and Trapezoid Transition Layer. Qiao Y; Jin S; Zhong C; Qin L Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014242 [TBL] [Abstract][Full Text] [Related]
10. Design, fabrication, and performance of a flextensional transducer based on electrostrictive polyvinylidene fluoride-trifluoroethylene copolymer. Cheng Z; Xu TB; Zhang Q; Meyer R; Van Tol D; Hughes J IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Sep; 49(9):1312-20. PubMed ID: 12243582 [TBL] [Abstract][Full Text] [Related]
11. Numerical and experimental investigation of a variable-curvature shell class I flextensional transducer. Li D; Lan Y; Zhou T J Acoust Soc Am; 2023 Sep; 154(3):1800-1812. PubMed ID: 37725521 [TBL] [Abstract][Full Text] [Related]
12. Spherical-Omnidirectional Piezoelectric Composite Transducer for High- Frequency Underwater Acoustics. Zhang Y; Wang L; Qin L; Zhong C; Hao S IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1791-1796. PubMed ID: 33275579 [TBL] [Abstract][Full Text] [Related]
13. A Low Frequency Broadband Flextensional Ultrasonic Transducer Array. Savoia AS; Mauti B; Caliano G IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jan; 63(1):128-38. PubMed ID: 26540680 [TBL] [Abstract][Full Text] [Related]
14. Numerical and experimental investigation of a negative-curvature variable-shell flextensional transducer. Li D; Lan Y; Zhou T; Lu W J Acoust Soc Am; 2023 Jan; 153(1):505. PubMed ID: 36732252 [TBL] [Abstract][Full Text] [Related]
15. A miniature class V flextensional cymbal transducer with directional beam patterns: the double-driver. Zhang J; Hladky-Hennion AC; Hughes WJ; Newnham RE Ultrasonics; 2001 Mar; 39(2):91-5. PubMed ID: 11270634 [TBL] [Abstract][Full Text] [Related]
16. Resonating Shell: A Spherical-Omnidirectional Ultrasound Transducer for Underwater Sensor Networks. Sadeghpour S; Meyers S; Kruth JP; Vleugels J; Kraft M; Puers R Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781777 [TBL] [Abstract][Full Text] [Related]
17. Modeling and underwater characterization of cymbal transducers and arrays. Zhang J; Hladky-Hennion AC; Hughes WJ; Newnham RE IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):560-8. PubMed ID: 11370370 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting. Qin L; Sun Y; Wang QM; Zhong Y; Ou M; Jiang Z; Tian W IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2803-12. PubMed ID: 23221230 [TBL] [Abstract][Full Text] [Related]
19. Characterization of lead zirconate titanate ceramics for use in miniature high-frequency (20-80 MHz) transducers. Foster FS; Ryan LK; Turnbull DH IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(5):446-53. PubMed ID: 18267606 [TBL] [Abstract][Full Text] [Related]
20. Analysis on the Radial Vibration of Longitudinally Polarized Radial Composite Tubular Transducer. Wang X; Lin S Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32854197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]