These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 36417724)
1. A Sparse Sampling Sensor Front-End IC for Low Power Continuous SpO Alamouti SF; Jan J; Yalcin C; Ting J; Arias AC; Muller R IEEE Trans Biomed Circuits Syst; 2022 Dec; 16(6):997-1007. PubMed ID: 36417724 [TBL] [Abstract][Full Text] [Related]
2. A 2.6 μW Monolithic CMOS Photoplethysmographic (PPG) Sensor Operating With 2 μW LED Power for Continuous Health Monitoring. Caizzone A; Boukhayma A; Enz C IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1243-1253. PubMed ID: 31581097 [TBL] [Abstract][Full Text] [Related]
3. A 2.3-5.7 μW Tri-Modal Self-Adaptive Photoplethysmography Sensor Interface IC for Heart Rate, SpO Wang P; Agarwala R; Ownby NB; Liu X; Calhoun BH IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):564-579. PubMed ID: 38289849 [TBL] [Abstract][Full Text] [Related]
4. A Low-Power Photoplethysmogram-Based Heart Rate Sensor Using Heartbeat Locked Loop. Lee J; Jang DH; Park S; Cho S IEEE Trans Biomed Circuits Syst; 2018 Dec; 12(6):1220-1229. PubMed ID: 30334807 [TBL] [Abstract][Full Text] [Related]
5. A 5-ms Error, 22-μA Photoplethysmography Sensor using Current Integration Circuit and Correlated Double Sampling. Watanabe K; Izumi S; Yano Y; Kawaguchi H; Yoshimoto M Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5566-5569. PubMed ID: 30441597 [TBL] [Abstract][Full Text] [Related]
6. Low-Noise Photoplethysmography Sensor Using Correlated Double Sampling for Heartbeat Interval Acquisition. Watanabe K; Izumi S; Sasai K; Yano Y; Kawaguchi H; Yoshimoto M IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1552-1562. PubMed ID: 31796415 [TBL] [Abstract][Full Text] [Related]
7. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises. Pankaj ; Kumar A; Komaragiri R; Kumar M Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340 [TBL] [Abstract][Full Text] [Related]
8. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Salehizadeh SM; Dao D; Bolkhovsky J; Cho C; Mendelson Y; Chon KH Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703618 [TBL] [Abstract][Full Text] [Related]
9. Q-PPG: Energy-Efficient PPG-Based Heart Rate Monitoring on Wearable Devices. Burrello A; Pagliari DJ; Risso M; Benatti S; Macii E; Benini L; Poncino M IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1196-1209. PubMed ID: 34673496 [TBL] [Abstract][Full Text] [Related]
10. A pilot study on low power pulse rate detection based on compressive sampling. Huang BY; Wang L; Wang B; Lin SJ; Wu D; Zhang YT Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():753-6. PubMed ID: 19963730 [TBL] [Abstract][Full Text] [Related]
11. Quarter-Annulus Si-Photodetector with Equal Inner and Outer Radii of Curvature for Reflective Photoplethysmography Sensors. Na Y; Kim C; Kim K; Kim TH; Kwon SH; Kang IS; Jung YW; Kim TW; Cho DH; An J; Lee JK; Park J Biosensors (Basel); 2024 Feb; 14(2):. PubMed ID: 38392028 [TBL] [Abstract][Full Text] [Related]
12. Modeling Energy Aware Photoplethysmography for Personalized Healthcare Applications. Ownby NB; Flynn KA; Calhoun BH IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):570-579. PubMed ID: 35969562 [TBL] [Abstract][Full Text] [Related]
13. 14.85 µW Analog Front-End for Photoplethysmography Acquisition with 142-dBΩ Gain and 64.2-pA Lin B; Atef M; Wang G Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691150 [TBL] [Abstract][Full Text] [Related]
14. Flexible Organic/Inorganic Hybrid Near-Infrared Photoplethysmogram Sensor for Cardiovascular Monitoring. Xu H; Liu J; Zhang J; Zhou G; Luo N; Zhao N Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28612929 [TBL] [Abstract][Full Text] [Related]
15. Wireless, Multi-Sensor System-on-Chip for pH and Amperometry Powered by Body Heat. Chou TH; Yu S; Bose S; Cook J; Park J; Johnston ML IEEE Trans Biomed Circuits Syst; 2023 Aug; 17(4):782-794. PubMed ID: 37318975 [TBL] [Abstract][Full Text] [Related]
16. State-dependent Gaussian kernel-based power spectrum modification for accurate instantaneous heart rate estimation. Chung H; Lee H; Lee J PLoS One; 2019; 14(4):e0215014. PubMed ID: 30951559 [TBL] [Abstract][Full Text] [Related]
17. Information Retrieval from Photoplethysmographic Sensors: A Comprehensive Comparison of Practical Interpolation and Breath-Extraction Techniques at Different Sampling Rates. Reali P; Lolatto R; Coelli S; Tartaglia G; Bianchi AM Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214329 [TBL] [Abstract][Full Text] [Related]
18. Accurate Heart Rate Monitoring During Physical Exercises Using PPG. Temko A IEEE Trans Biomed Eng; 2017 Sep; 64(9):2016-2024. PubMed ID: 28278454 [TBL] [Abstract][Full Text] [Related]
19. Flexible wearable sensor nodes with solar energy harvesting. Taiyang Wu ; Arefin MS; Redoute JM; Yuce MR Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3273-3276. PubMed ID: 29060596 [TBL] [Abstract][Full Text] [Related]
20. Spot measurement of heart rate based on morphology of PhotoPlethysmoGraphic (PPG) signals. Madhan Mohan P; Nagarajan V; Vignesh JC J Med Eng Technol; 2017 Feb; 41(2):87-96. PubMed ID: 27609492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]