BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36417801)

  • 1. Biological Oxidation of Fe(II)-Bearing Smectite by Microaerophilic Iron Oxidizer
    Zhou N; Kupper RJ; Catalano JG; Thompson A; Chan CS
    Environ Sci Technol; 2022 Dec; 56(23):17443-17453. PubMed ID: 36417801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling Fe(II)-Oxidizing Mechanisms in a Facultative Fe(II) Oxidizer, Sideroxydans lithotrophicus Strain ES-1, via Culturing, Transcriptomics, and Reverse Transcription-Quantitative PCR.
    Zhou N; Keffer JL; Polson SW; Chan CS
    Appl Environ Microbiol; 2022 Jan; 88(2):e0159521. PubMed ID: 34788064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for Quinol Oxidation Activity of ImoA, a Novel NapC/NirT Family Protein from the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1.
    Jain A; Coelho A; Madjarov J; Paquete CM; Gralnick JA
    mBio; 2022 Oct; 13(5):e0215022. PubMed ID: 36106730
    [No Abstract]   [Full Text] [Related]  

  • 4. Ligand Effects on Biotic and Abiotic Fe(II) Oxidation by the Microaerophile
    Zhou N; Luther GW; Chan CS
    Environ Sci Technol; 2021 Jul; 55(13):9362-9371. PubMed ID: 34110796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and Characterization of MtoA: A Decaheme c-Type Cytochrome of the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1.
    Liu J; Wang Z; Belchik SM; Edwards MJ; Liu C; Kennedy DW; Merkley ED; Lipton MS; Butt JN; Richardson DJ; Zachara JM; Fredrickson JK; Rosso KM; Shi L
    Front Microbiol; 2012; 3():37. PubMed ID: 22347878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial Fe(II) oxidation by Sideroxydans lithotrophicus ES-1 in the presence of Schlöppnerbrunnen fen-derived humic acids.
    Hädrich A; Taillefert M; Akob DM; Cooper RE; Litzba U; Wagner FE; Nietzsche S; Ciobota V; Rösch P; Popp J; Küsel K
    FEMS Microbiol Ecol; 2019 Apr; 95(4):. PubMed ID: 30874727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing electron transfer components from an Fe(II) oxidizing bacterium.
    Jain A; Kalb MJ; Gralnick JA
    Microbiology (Reading); 2022 Sep; 168(9):. PubMed ID: 36111788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron Oxidation by a Fused Cytochrome-Porin Common to Diverse Iron-Oxidizing Bacteria.
    Keffer JL; McAllister SM; Garber AI; Hallahan BJ; Sutherland MC; Rozovsky S; Chan CS
    mBio; 2021 Aug; 12(4):e0107421. PubMed ID: 34311573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of Microaerophilic Iron(II)-Oxidizers to Iron(III) Mineral Formation.
    Maisch M; Lueder U; Laufer K; Scholze C; Kappler A; Schmidt C
    Environ Sci Technol; 2019 Jul; 53(14):8197-8204. PubMed ID: 31203607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral.
    Schaefer MV; Gorski CA; Scherer MM
    Environ Sci Technol; 2011 Jan; 45(2):540-5. PubMed ID: 21138293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixotrophy broadens the ecological niche range of the iron oxidizer Sideroxydans sp. CL21 isolated from an iron-rich peatland.
    Cooper RE; Finck J; Chan C; Küsel K
    FEMS Microbiol Ecol; 2023 Jan; 99(2):. PubMed ID: 36623865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria.
    Peng C; Bryce C; Sundman A; Kappler A
    Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30796062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics.
    Emerson D; Field EK; Chertkov O; Davenport KW; Goodwin L; Munk C; Nolan M; Woyke T
    Front Microbiol; 2013; 4():254. PubMed ID: 24062729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-Year
    Mitsunobu S; Ohashi Y; Makita H; Suzuki Y; Nozaki T; Ohigashi T; Ina T; Takaki Y
    Appl Environ Microbiol; 2021 Nov; 87(23):e0097721. PubMed ID: 34550782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metagenomic analysis of Fe(II)-oxidizing bacteria for Fe(III) mineral formation and carbon assimilation under microoxic conditions in paddy soil.
    Chen Y; Li X; Liu T; Li F; Sun W; Young LY; Huang W
    Sci Total Environ; 2022 Dec; 851(Pt 1):158068. PubMed ID: 35987227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms.
    Kostka JE; Dalton DD; Skelton H; Dollhopf S; Stucki JW
    Appl Environ Microbiol; 2002 Dec; 68(12):6256-62. PubMed ID: 12450850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in the microbial community during microbial microaerophilic Fe(II) oxidation at circumneutral pH enriched from paddy soil.
    Tong H; Chen M; Lv Y; Liu C; Zheng C; Xia Y
    Environ Geochem Health; 2021 Mar; 43(3):1305-1317. PubMed ID: 32975698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria.
    Lueder U; Druschel G; Emerson D; Kappler A; Schmidt C
    FEMS Microbiol Ecol; 2018 Feb; 94(2):. PubMed ID: 29228192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.
    Liu D; Dong H; Bishop ME; Zhang J; Wang H; Xie S; Wang S; Huang L; Eberl DD
    Geobiology; 2012 Mar; 10(2):150-62. PubMed ID: 22074236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution and correlation of iron oxidizers and carbon-fixing microbial communities in natural wetlands.
    Dong L; Wang X; Tong H; Lv Y; Chen M; Li J; Liu C
    Sci Total Environ; 2024 Feb; 912():168719. PubMed ID: 38040374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.