BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36417801)

  • 21. Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen.
    Lüdecke C; Reiche M; Eusterhues K; Nietzsche S; Küsel K
    Environ Microbiol; 2010 Oct; 12(10):2814-25. PubMed ID: 20545739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metagenomic Analyses of the Autotrophic Fe(II)-Oxidizing, Nitrate-Reducing Enrichment Culture KS.
    He S; Tominski C; Kappler A; Behrens S; Roden EE
    Appl Environ Microbiol; 2016 May; 82(9):2656-2668. PubMed ID: 26896135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth of microaerophilic Fe(II)-oxidizing bacteria using Fe(II) produced by Fe(III) photoreduction.
    Lueder U; Maisch M; Jørgensen BB; Druschel G; Schmidt C; Kappler A
    Geobiology; 2022 May; 20(3):421-434. PubMed ID: 35014744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective.
    Shi L; Rosso KM; Zachara JM; Fredrickson JK
    Biochem Soc Trans; 2012 Dec; 40(6):1261-7. PubMed ID: 23176465
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antibacterial Mechanisms of Reduced Iron-Containing Smectite-Illite Clay Minerals.
    Guo D; Xia Q; Zeng Q; Wang X; Dong H
    Environ Sci Technol; 2021 Nov; 55(22):15256-15265. PubMed ID: 34723508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils.
    Krepski ST; Emerson D; Hredzak-Showalter PL; Luther GW; Chan CS
    Geobiology; 2013 Sep; 11(5):457-71. PubMed ID: 23790206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial lithotrophic oxidation of structural Fe(II) in biotite.
    Shelobolina E; Xu H; Konishi H; Kukkadapu R; Wu T; Blöthe M; Roden E
    Appl Environ Microbiol; 2012 Aug; 78(16):5746-52. PubMed ID: 22685132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitrate Removal by a Novel Lithoautotrophic Nitrate-Reducing, Iron(II)-Oxidizing Culture Enriched from a Pyrite-Rich Limestone Aquifer.
    Jakus N; Blackwell N; Osenbrück K; Straub D; Byrne JM; Wang Z; Glöckler D; Elsner M; Lueders T; Grathwohl P; Kleindienst S; Kappler A
    Appl Environ Microbiol; 2021 Jul; 87(16):e0046021. PubMed ID: 34085863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative Genomic Insights into Ecophysiology of Neutrophilic, Microaerophilic Iron Oxidizing Bacteria.
    Kato S; Ohkuma M; Powell DH; Krepski ST; Oshima K; Hattori M; Shapiro N; Woyke T; Chan CS
    Front Microbiol; 2015; 6():1265. PubMed ID: 26617599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation.
    Van Groeningen N; ThomasArrigo LK; Byrne JM; Kappler A; Christl I; Kretzschmar R
    Environ Sci Process Impacts; 2020 Jun; 22(6):1355-1367. PubMed ID: 32374339
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The formation of •OH with Fe-bearing smectite clays and low-molecular-weight thiols: Implication of As(III) removal.
    Sun Z; Huang M; Liu C; Fang G; Chen N; Zhou D; Gao J
    Water Res; 2020 May; 174():115631. PubMed ID: 32114017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidation of bioreduced iron-bearing clay mineral triggers arsenic immobilization.
    Zhao Z; Yuan Q; Meng Y; Luan F
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):44874-44882. PubMed ID: 35138538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validating the Cyc2 Neutrophilic Iron Oxidation Pathway Using Meta-omics of
    McAllister SM; Polson SW; Butterfield DA; Glazer BT; Sylvan JB; Chan CS
    mSystems; 2020 Feb; 5(1):. PubMed ID: 32071158
    [No Abstract]   [Full Text] [Related]  

  • 35. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.
    Gorski CA; Klüpfel LE; Voegelin A; Sander M; Hofstetter TB
    Environ Sci Technol; 2013; 47(23):13477-85. PubMed ID: 24219773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface-bound radical control rapid organic contaminant degradation through peroxymonosulfate activation by reduced Fe-bearing smectite clays.
    Chen N; Fang G; Zhu C; Wu S; Liu G; Dionysiou DD; Wang X; Gao J; Zhou D
    J Hazard Mater; 2020 May; 389():121819. PubMed ID: 31848100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes.
    Summers ZM; Gralnick JA; Bond DR
    mBio; 2013 Jan; 4(1):e00420-12. PubMed ID: 23362318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tc(VII) and Cr(VI) Interaction with Naturally Reduced Ferruginous Smectite from a Redox Transition Zone.
    Qafoku O; Pearce CI; Neumann A; Kovarik L; Zhu M; Ilton ES; Bowden ME; Resch CT; Arey BW; Arenholz E; Felmy AR; Rosso KM
    Environ Sci Technol; 2017 Aug; 51(16):9042-9052. PubMed ID: 28703576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transformation of anthracene on various cation-modified clay minerals.
    Li L; Jia H; Li X; Wang C
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):1261-9. PubMed ID: 25135171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Abiotic transformation of perchloroethylene in homogeneous dithionite solution and in suspensions of dithionite-treated clay minerals.
    Nzengung VA; Castillo RM; Gates WP; Mills GL
    Environ Sci Technol; 2001 Jun; 35(11):2244-51. PubMed ID: 11414025
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.