BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36417879)

  • 1. Calreticulin mutations affect its chaperone function and perturb the glycoproteome.
    Schürch PM; Malinovska L; Hleihil M; Losa M; Hofstetter MC; Wildschut MHE; Lysenko V; Lakkaraju AKK; Maat CA; Benke D; Aguzzi A; Wollscheid B; Picotti P; Theocharides APA
    Cell Rep; 2022 Nov; 41(8):111689. PubMed ID: 36417879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Calreticulin and Its Mutants on Endoplasmic Reticulum Function in Health and Disease.
    Arshad N; Cresswell P
    Prog Mol Subcell Biol; 2021; 59():163-180. PubMed ID: 34050866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homozygous calreticulin mutations in patients with myelofibrosis lead to acquired myeloperoxidase deficiency.
    Theocharides AP; Lundberg P; Lakkaraju AK; Lysenko V; Myburgh R; Aguzzi A; Skoda RC; Manz MG
    Blood; 2016 Jun; 127(25):3253-9. PubMed ID: 27013444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calreticulin mutations in myeloproliferative neoplasms.
    Shide K
    Int Rev Cell Mol Biol; 2021; 365():179-226. PubMed ID: 34756244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Analysis of Calreticulin, an Endoplasmic Reticulum-Resident Molecular Chaperone.
    Houen G; Højrup P; Ciplys E; Gaboriaud C; Slibinskas R
    Prog Mol Subcell Biol; 2021; 59():13-25. PubMed ID: 34050860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Somatic mutations of calreticulin in myeloproliferative neoplasms.
    Imai M; Araki M; Komatsu N
    Int J Hematol; 2017 Jun; 105(6):743-747. PubMed ID: 28470469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of calreticulin mutations in myeloproliferative neoplasms.
    Araki M; Komatsu N
    Int J Hematol; 2020 Feb; 111(2):200-205. PubMed ID: 31848992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of myeloproliferative neoplasms by mutant calreticulin: underlying mechanisms].
    Araki M
    Rinsho Ketsueki; 2018; 59(8):1072-1077. PubMed ID: 30185708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation sensitive gel electrophoresis for the detection of calreticulin mutations in BCR-ABL1-negative myeloproliferative neoplasms.
    Zakaria NA; Rosle NA; Siti Asmaa MJ; Aziee S; Haiyuni MY; Samat NA; Husin A; Hassan R; Ramli M; Mohamed Yusoff S; Ibrahim IK; Al-Jamal HAN; Johan MF
    Int J Lab Hematol; 2021 Dec; 43(6):1451-1457. PubMed ID: 34125992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calreticulin Ins5 and Del52 mutations impair unfolded protein and oxidative stress responses in K562 cells expressing CALR mutants.
    Salati S; Genovese E; Carretta C; Zini R; Bartalucci N; Prudente Z; Pennucci V; Ruberti S; Rossi C; Rontauroli S; Enzo E; Calabresi L; Balliu M; Mannarelli C; Bianchi E; Guglielmelli P; Tagliafico E; Vannucchi AM; Manfredini R
    Sci Rep; 2019 Jul; 9(1):10558. PubMed ID: 31332222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Contemporary Approach to CALR-Positive Myeloproliferative Neoplasms.
    Belčič Mikič T; Pajič T; Zver S; Sever M
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33806036
    [No Abstract]   [Full Text] [Related]  

  • 12. Calreticulin and cancer.
    Fucikova J; Spisek R; Kroemer G; Galluzzi L
    Cell Res; 2021 Jan; 31(1):5-16. PubMed ID: 32733014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progenitor genotyping reveals a complex clonal architecture in a subset of CALR-mutated myeloproliferative neoplasms.
    Martin S; Wright CM; Scott LM
    Br J Haematol; 2017 Apr; 177(1):55-66. PubMed ID: 28168700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel molecular mechanism of cellular transformation by a mutant molecular chaperone in myeloproliferative neoplasms.
    Araki M; Komatsu N
    Cancer Sci; 2017 Oct; 108(10):1907-1912. PubMed ID: 28741795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin.
    Edahiro Y; Araki M; Komatsu N
    Cancer Sci; 2020 Aug; 111(8):2682-2688. PubMed ID: 32462673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rare type 1-like and type 2-like calreticulin mutants induce similar myeloproliferative neoplasms as prevalent type 1 and 2 mutants in mice.
    Toppaldoddi KR; da Costa Cacemiro M; Bluteau O; Panneau-Schmaltz B; Pioch A; Muller D; Villeval JL; Raslova H; Constantinescu SN; Plo I; Vainchenker W; Marty C
    Oncogene; 2019 Mar; 38(10):1651-1660. PubMed ID: 30846848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding the Role of Calreticulin in Myeloproliferative Neoplasm Pathogenesis.
    Merlinsky TR; Levine RL; Pronier E
    Clin Cancer Res; 2019 May; 25(10):2956-2962. PubMed ID: 30655313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myeloproliferative Neoplasms With Calreticulin Mutations Exhibit Distinctive Morphologic Features.
    Loghavi S; Bueso-Ramos CE; Kanagal-Shamanna R; Ok CY; Salim AA; Routbort MJ; Mehrotra M; Verstovsek S; Medeiros LJ; Luthra R; Patel KP
    Am J Clin Pathol; 2016 Mar; 145(3):418-27. PubMed ID: 27124925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinicopathological differences exist between CALR- and JAK2-mutated myeloproliferative neoplasms despite a similar molecular landscape: data from targeted next-generation sequencing in the diagnostic laboratory.
    Agarwal R; Blombery P; McBean M; Jones K; Fellowes A; Doig K; Forsyth C; Westerman DA
    Ann Hematol; 2017 May; 96(5):725-732. PubMed ID: 28161773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T-cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms.
    Cimen Bozkus C; Roudko V; Finnigan JP; Mascarenhas J; Hoffman R; Iancu-Rubin C; Bhardwaj N
    Cancer Discov; 2019 Sep; 9(9):1192-1207. PubMed ID: 31266769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.