These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36417948)

  • 1. Characterization of Porcine Gingiva for Drug Absorption.
    Wanasathop A; Zhong C; Nimmansophon P; Murawsky M; Li SK
    J Pharm Sci; 2023 Apr; 112(4):1032-1040. PubMed ID: 36417948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permeability of Fresh and Frozen Porcine and Human Gingiva and the Effect of Storage Duration.
    Wanasathop A; Choi HA; Nimmansophon P; Murawsky M; Krishnan DG; Li SK
    Pharmaceutics; 2023 May; 15(5):. PubMed ID: 37242734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iontophoresis on Porcine and Human Gingiva.
    Wanasathop A; Nimmansophon P; Murawsky M; Krishnan DG; Li SK
    Pharm Res; 2023 Aug; 40(8):1977-1987. PubMed ID: 37258949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeability of Buccal Mucosa.
    Wanasathop A; Patel PB; Choi HA; Li SK
    Pharmaceutics; 2021 Oct; 13(11):. PubMed ID: 34834229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bovine and porcine transscleral solute transport: influence of lipophilicity and the Choroid-Bruch's layer.
    Cheruvu NP; Kompella UB
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4513-22. PubMed ID: 17003447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical determinants of passive membrane permeability: role of solute hydrogen-bonding potential and volume.
    Goodwin JT; Conradi RA; Ho NF; Burton PS
    J Med Chem; 2001 Oct; 44(22):3721-9. PubMed ID: 11606137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the theoretical pore sizes of the porcine oral mucosa for permeation of hydrophilic permeants.
    Goswami T; Jasti BR; Li X
    Arch Oral Biol; 2009 Jun; 54(6):577-82. PubMed ID: 19344889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-equilibrium analysis of the ion-pair mediated membrane transport of low-permeability drugs.
    Miller JM; Dahan A; Gupta D; Varghese S; Amidon GL
    J Control Release; 2009 Jul; 137(1):31-7. PubMed ID: 19264104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of subconjunctival delivery with model ionic permeants and magnetic resonance imaging.
    Li SK; Molokhia SA; Jeong EK
    Pharm Res; 2004 Dec; 21(12):2175-84. PubMed ID: 15648248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of experimental temperature on the permeation of model diffusants across porcine buccal mucosa.
    Kulkarni UD; Mahalingam R; Li X; Pather I; Jasti B
    AAPS PharmSciTech; 2011 Jun; 12(2):579-86. PubMed ID: 21538212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Tritiated Water Skin Barrier Integrity Test: Considerations for Acceptance Criteria with and Without
    Lehman PA; Beatch K; Raney SG; Franz TJ
    Pharm Res; 2017 Jan; 34(1):217-228. PubMed ID: 27822852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative relationship between the octanol/water partition coefficient and the diffusion limitation of the exchange between adipose and blood.
    Levitt DG
    BMC Clin Pharmacol; 2010 Jan; 10():1. PubMed ID: 20055995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro models of the blood-brain barrier to polar permeants: comparison of transmonolayer flux measurements and cell uptake kinetics using cultured cerebral capillary endothelial cells.
    Johnson MD; Anderson BD
    J Pharm Sci; 1999 Jun; 88(6):620-5. PubMed ID: 10350498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physicochemical profiling (solubility, permeability and charge state).
    Avdeef A
    Curr Top Med Chem; 2001 Sep; 1(4):277-351. PubMed ID: 11899112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of γ-cyclodextrin effect on permeation of lipophilic drugs: application of cellophane/fused octanol membrane.
    Muankaew C; Jansook P; Loftsson T
    Pharm Dev Technol; 2017 Jun; 22(4):562-570. PubMed ID: 27146583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between permeant size and permeability in lipid bilayer membranes.
    Xiang TX; Anderson BD
    J Membr Biol; 1994 Jun; 140(2):111-22. PubMed ID: 7932645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical QSAR Analysis of Passive Permeability Across Caco-2 Monolayers.
    Lanevskij K; Didziapetris R
    J Pharm Sci; 2019 Jan; 108(1):78-86. PubMed ID: 30321548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.
    Sjögren E; Westergren J; Grant I; Hanisch G; Lindfors L; Lennernäs H; Abrahamsson B; Tannergren C
    Eur J Pharm Sci; 2013 Jul; 49(4):679-98. PubMed ID: 23727464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles, structure-based transdermal transport model to evaluate lipid partition and diffusion coefficients of hydrophobic permeants solely from stratum corneum permeation experiments.
    Kushner J; Deen W; Blankschtein D; Langer R
    J Pharm Sci; 2007 Dec; 96(12):3236-51. PubMed ID: 17887175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs' lipophilicity and molecular weight.
    Camenisch G; Alsenz J; van de Waterbeemd H; Folkers G
    Eur J Pharm Sci; 1998 Oct; 6(4):317-24. PubMed ID: 9795088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.