These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 36418221)

  • 21. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.
    Key HM; Dydio P; Clark DS; Hartwig JF
    Nature; 2016 Jun; 534(7608):534-7. PubMed ID: 27296224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Periplasmic Screening for Artificial Metalloenzymes.
    Jeschek M; Panke S; Ward TR
    Methods Enzymol; 2016; 580():539-56. PubMed ID: 27586348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications.
    Himiyama T; Okamoto Y
    Molecules; 2020 Jun; 25(13):. PubMed ID: 32629938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent achievments in the design and engineering of artificial metalloenzymes.
    Dürrenberger M; Ward TR
    Curr Opin Chem Biol; 2014 Apr; 19():99-106. PubMed ID: 24608081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of Heteronuclear Metalloenzymes.
    Bhagi-Damodaran A; Hosseinzadeh P; Mirts E; Reed J; Petrik ID; Lu Y
    Methods Enzymol; 2016; 580():501-37. PubMed ID: 27586347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal-binding promiscuity in artificial metalloenzyme design.
    Pordea A
    Curr Opin Chem Biol; 2015 Apr; 25():124-32. PubMed ID: 25603469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unlocking New Reactivities in Enzymes by Iminium Catalysis.
    Xu G; Poelarends GJ
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202203613. PubMed ID: 35524737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metallopeptide catalysts and artificial metalloenzymes containing unnatural amino acids.
    Lewis JC
    Curr Opin Chem Biol; 2015 Apr; 25():27-35. PubMed ID: 25545848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies.
    Schwizer F; Okamoto Y; Heinisch T; Gu Y; Pellizzoni MM; Lebrun V; Reuter R; Köhler V; Lewis JC; Ward TR
    Chem Rev; 2018 Jan; 118(1):142-231. PubMed ID: 28714313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges.
    Lu Y
    Inorg Chem; 2006 Dec; 45(25):9930-40. PubMed ID: 17140190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A preorganization oriented computational method for de novo design of Kemp elimination enzymes.
    Zhang S; Zhang J; Luo W; Wang P; Zhu Y
    Enzyme Microb Technol; 2022 Oct; 160():110093. PubMed ID: 35816919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of artificial metalloenzymes with multiple inorganic elements: The more the merrier.
    Jung SM; Lee J; Song WJ
    J Inorg Biochem; 2021 Oct; 223():111552. PubMed ID: 34332336
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myoglobins engineered with artificial cofactors serve as artificial metalloenzymes and models of natural enzymes.
    Oohora K; Hayashi T
    Dalton Trans; 2021 Feb; 50(6):1940-1949. PubMed ID: 33433532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designing better enzymes: Insights from directed evolution.
    Bunzel HA; Anderson JLR; Mulholland AJ
    Curr Opin Struct Biol; 2021 Apr; 67():212-218. PubMed ID: 33517098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strategies for designing biocatalysts with new functions.
    Bell EL; Hutton AE; Burke AJ; O'Connell A; Barry A; O'Reilly E; Green AP
    Chem Soc Rev; 2024 Mar; 53(6):2851-2862. PubMed ID: 38353665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial metalloenzymes derived from three-helix bundles.
    Tebo AG; Pecoraro VL
    Curr Opin Chem Biol; 2015 Apr; 25():65-70. PubMed ID: 25579452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemogenetic protein engineering: an efficient tool for the optimization of artificial metalloenzymes.
    Pordea A; Ward TR
    Chem Commun (Camb); 2008 Sep; (36):4239-49. PubMed ID: 18802535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.