BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 36418298)

  • 1. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo.
    Willis JCW; Silva-Pinheiro P; Widdup L; Minczuk M; Liu DR
    Nat Commun; 2022 Nov; 13(1):7204. PubMed ID: 36418298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors.
    Lee S; Lee H; Baek G; Kim JS
    Nat Biotechnol; 2023 Mar; 41(3):378-386. PubMed ID: 36229610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted C•G-to-T•A base editing with TALE-cytosine deaminases in plants.
    Zhang D; Pries V; Boch J
    BMC Biol; 2024 Apr; 22(1):99. PubMed ID: 38679734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA.
    Mok BY; Kotrys AV; Raguram A; Huang TP; Mootha VK; Liu DR
    Nat Biotechnol; 2022 Sep; 40(9):1378-1387. PubMed ID: 35379961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing.
    Mok BY; de Moraes MH; Zeng J; Bosch DE; Kotrys AV; Raguram A; Hsu F; Radey MC; Peterson SB; Mootha VK; Mougous JD; Liu DR
    Nature; 2020 Jul; 583(7817):631-637. PubMed ID: 32641830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases.
    Cho SI; Lee S; Mok YG; Lim K; Lee J; Lee JM; Chung E; Kim JS
    Cell; 2022 May; 185(10):1764-1776.e12. PubMed ID: 35472302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial base editor induces substantial nuclear off-target mutations.
    Lei Z; Meng H; Liu L; Zhao H; Rao X; Yan Y; Wu H; Liu M; He A; Yi C
    Nature; 2022 Jun; 606(7915):804-811. PubMed ID: 35551512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in mitochondrial DNA base editing technology.
    Song RJ; Han L; Sun HF; Shen B
    Yi Chuan; 2023 Aug; 45(8):632-642. PubMed ID: 37609815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing mitochondrial base editors with diverse context compatibility and high fidelity via saturated spacer library.
    Sun H; Wang Z; Shen L; Feng Y; Han L; Qian X; Meng R; Ji K; Liang D; Zhou F; Lou X; Zhang J; Shen B
    Nat Commun; 2023 Oct; 14(1):6625. PubMed ID: 37857619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of TALE-adenine base editors in plants.
    Zhang D; Boch J
    Plant Biotechnol J; 2024 May; 22(5):1067-1077. PubMed ID: 37997697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Base editing in human cells with monomeric DddA-TALE fusion deaminases.
    Mok YG; Lee JM; Chung E; Lee J; Lim K; Cho SI; Kim JS
    Nat Commun; 2022 Jul; 13(1):4038. PubMed ID: 35821233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconstrained Precision Mitochondrial Genome Editing with αDdCBEs.
    Castillo SR; Simone BW; Clark KJ; Devaux P; Ekker SC
    bioRxiv; 2024 May; ():. PubMed ID: 38798498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compact zinc finger architecture utilizing toxin-derived cytidine deaminases for highly efficient base editing in human cells.
    Fauser F; Kadam BN; Arangundy-Franklin S; Davis JE; Vaidya V; Schmidt NJ; Lew G; Xia DF; Mureli R; Ng C; Zhou Y; Scarlott NA; Eshleman J; Bendaña YR; Shivak DA; Reik A; Li P; Davis GD; Miller JC
    Nat Commun; 2024 Feb; 15(1):1181. PubMed ID: 38360922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A DddA ortholog-based and transactivator-assisted nuclear and mitochondrial cytosine base editors with expanded target compatibility.
    Guo J; Yu W; Li M; Chen H; Liu J; Xue X; Lin J; Huang S; Shu W; Huang X; Liu Z; Wang S; Qiao Y
    Mol Cell; 2023 May; 83(10):1710-1724.e7. PubMed ID: 37141888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strand-selective base editing of human mitochondrial DNA using mitoBEs.
    Yi Z; Zhang X; Tang W; Yu Y; Wei X; Zhang X; Wei W
    Nat Biotechnol; 2024 Mar; 42(3):498-509. PubMed ID: 37217751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base editing of organellar DNA with programmable deaminases.
    Kim JS; Chen J
    Nat Rev Mol Cell Biol; 2024 Jan; 25(1):34-45. PubMed ID: 37794167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering TALE-linked deaminases to facilitate precision adenine base editing in mitochondrial DNA.
    Cho SI; Lim K; Hong S; Lee J; Kim A; Lim CJ; Ryou S; Lee JM; Mok YG; Chung E; Kim S; Han S; Cho SM; Kim J; Kim EK; Nam KH; Oh Y; Choi M; An TH; Oh KJ; Lee S; Lee H; Kim JS
    Cell; 2024 Jan; 187(1):95-109.e26. PubMed ID: 38181745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced C-To-T and A-To-G Base Editing in Mitochondrial DNA with Engineered DdCBE and TALED.
    Wei Y; Jin M; Huang S; Yao F; Ren N; Xu K; Li S; Gao P; Zhou Y; Chen Y; Yang H; Li W; Xu C; Zhang M; Wang X
    Adv Sci (Weinh); 2024 Jan; 11(3):e2304113. PubMed ID: 37984866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells.
    Kurt IC; Zhou R; Iyer S; Garcia SP; Miller BR; Langner LM; Grünewald J; Joung JK
    Nat Biotechnol; 2021 Jan; 39(1):41-46. PubMed ID: 32690971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trends and prospects in mitochondrial genome editing.
    Phan HTL; Lee H; Kim K
    Exp Mol Med; 2023 May; 55(5):871-878. PubMed ID: 37121968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.