BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 36418298)

  • 21. Enhanced mitochondrial DNA editing in mice using nuclear-exported TALE-linked deaminases and nucleases.
    Lee S; Lee H; Baek G; Namgung E; Park JM; Kim S; Hong S; Kim JS
    Genome Biol; 2022 Oct; 23(1):211. PubMed ID: 36224582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
    Komor AC; Kim YB; Packer MS; Zuris JA; Liu DR
    Nature; 2016 May; 533(7603):420-4. PubMed ID: 27096365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DddA homolog search and engineering expand sequence compatibility of mitochondrial base editing.
    Mi L; Shi M; Li YX; Xie G; Rao X; Wu D; Cheng A; Niu M; Xu F; Yu Y; Gao N; Wei W; Wang X; Wang Y
    Nat Commun; 2023 Feb; 14(1):874. PubMed ID: 36797253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases.
    Lee H; Lee S; Baek G; Kim A; Kang BC; Seo H; Kim JS
    Nat Commun; 2021 Feb; 12(1):1190. PubMed ID: 33608520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Off-Target Editing by CRISPR-Guided DNA Base Editors.
    Park S; Beal PA
    Biochemistry; 2019 Sep; 58(36):3727-3734. PubMed ID: 31433621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases.
    Lim K; Cho SI; Kim JS
    Nat Commun; 2022 Jan; 13(1):366. PubMed ID: 35042880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [CRISPR/Cas-mediated DNA base editing technology and its application in biomedicine and agriculture].
    Yu C; Mo J; Zhao X; Li G; Zhang X
    Sheng Wu Gong Cheng Xue Bao; 2021 Sep; 37(9):3071-3087. PubMed ID: 34622618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Harnessing accurate mitochondrial DNA base editing mediated by DdCBEs in a predictable manner.
    Qiu J; Wu H; Xie Q; Zhou Y; Gao Y; Liu J; Jiang X; Suo L; Kuang Y
    Front Bioeng Biotechnol; 2024; 12():1372211. PubMed ID: 38655388
    [No Abstract]   [Full Text] [Related]  

  • 29. Development of Toolboxes for Precision Genome/Epigenome Editing and Imaging of Epigenetics.
    Nomura W
    Chem Rec; 2018 Dec; 18(12):1717-1726. PubMed ID: 30066981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing.
    Chen L; Zhu B; Ru G; Meng H; Yan Y; Hong M; Zhang D; Luan C; Zhang S; Wu H; Gao H; Bai S; Li C; Ding R; Xue N; Lei Z; Chen Y; Guan Y; Siwko S; Cheng Y; Song G; Wang L; Yi C; Liu M; Li D
    Nat Biotechnol; 2023 May; 41(5):663-672. PubMed ID: 36357717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive analysis of the editing window of C-to-T TALE base editors.
    Feola M; Pulicani S; Tkach D; Boyne A; Hong R; Mayer L; Duclert A; Duchateau P; Juillerat A
    Sci Rep; 2024 Jun; 14(1):12870. PubMed ID: 38834632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Base editors for simultaneous introduction of C-to-T and A-to-G mutations.
    Sakata RC; Ishiguro S; Mori H; Tanaka M; Tatsuno K; Ueda H; Yamamoto S; Seki M; Masuyama N; Nishida K; Nishimasu H; Arakawa K; Kondo A; Nureki O; Tomita M; Aburatani H; Yachie N
    Nat Biotechnol; 2020 Jul; 38(7):865-869. PubMed ID: 32483365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glycosylase base editors enable C-to-A and C-to-G base changes.
    Zhao D; Li J; Li S; Xin X; Hu M; Price MA; Rosser SJ; Bi C; Zhang X
    Nat Biotechnol; 2021 Jan; 39(1):35-40. PubMed ID: 32690970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of mitochondrial gene-editing strategies and their potential applications in mitochondrial hereditary diseases: a review.
    Gao Y; Guo L; Wang F; Wang Y; Li P; Zhang D
    Cytotherapy; 2024 Jan; 26(1):11-24. PubMed ID: 37930294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Base editing: precision chemistry on the genome and transcriptome of living cells.
    Rees HA; Liu DR
    Nat Rev Genet; 2018 Dec; 19(12):770-788. PubMed ID: 30323312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces.
    Zhao Y; Tian J; Zheng G; Chen J; Sun C; Yang Z; Zimin AA; Jiang W; Deng Z; Wang Z; Lu Y
    Sci China Life Sci; 2020 Jul; 63(7):1053-1062. PubMed ID: 31872379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR base editors: genome editing without double-stranded breaks.
    Eid A; Alshareef S; Mahfouz MM
    Biochem J; 2018 Jun; 475(11):1955-1964. PubMed ID: 29891532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase.
    Tong H; Wang H; Wang X; Liu N; Li G; Wu D; Li Y; Jin M; Li H; Wei Y; Li T; Yuan Y; Shi L; Yao X; Zhou Y; Yang H
    Nat Commun; 2024 Jun; 15(1):4897. PubMed ID: 38851742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction.
    Cornean A; Gierten J; Welz B; Mateo JL; Thumberger T; Wittbrodt J
    Elife; 2022 Apr; 11():. PubMed ID: 35373735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural basis of sequence-specific cytosine deamination by double-stranded DNA deaminase toxin DddA.
    Yin L; Shi K; Aihara H
    Nat Struct Mol Biol; 2023 Aug; 30(8):1153-1159. PubMed ID: 37460895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.