These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36418326)

  • 1. Phase separation modulates the assembly and dynamics of a polarity-related scaffold-signaling hub.
    Tan W; Cheng S; Li Y; Li XY; Lu N; Sun J; Tang G; Yang Y; Cai K; Li X; Ou X; Gao X; Zhao GP; Childers WS; Zhao W
    Nat Commun; 2022 Nov; 13(1):7181. PubMed ID: 36418326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffold-Scaffold Interaction Facilitates Cell Polarity Development in Caulobacter crescentus.
    Lu N; Duvall SW; Zhao G; Kowallis KA; Zhang C; Tan W; Sun J; Petitjean HN; Tomares DT; Zhao GP; Childers WS; Zhao W
    mBio; 2023 Apr; 14(2):e0321822. PubMed ID: 36971555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the activity of the bacterial histidine kinase PleC by the scaffolding protein PodJ.
    Zhang C; Zhao W; Duvall SW; Kowallis KA; Childers WS
    J Biol Chem; 2022 Apr; 298(4):101683. PubMed ID: 35124010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Localized Complex of Two Protein Oligomers Controls the Orientation of Cell Polarity.
    Perez AM; Mann TH; Lasker K; Ahrens DG; Eckart MR; Shapiro L
    mBio; 2017 Feb; 8(1):. PubMed ID: 28246363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Caulobacter crescentus polar organelle development protein PodJ is differentially localized and is required for polar targeting of the PleC development regulator.
    Hinz AJ; Larson DE; Smith CS; Brun YV
    Mol Microbiol; 2003 Feb; 47(4):929-41. PubMed ID: 12581350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamic interplay between a cell fate determinant and a lysozyme homolog drives the asymmetric division cycle of Caulobacter crescentus.
    Radhakrishnan SK; Thanbichler M; Viollier PH
    Genes Dev; 2008 Jan; 22(2):212-25. PubMed ID: 18198338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissection of functional domains of the polar localization factor PodJ in Caulobacter crescentus.
    Lawler ML; Larson DE; Hinz AJ; Klein D; Brun YV
    Mol Microbiol; 2006 Jan; 59(1):301-16. PubMed ID: 16359336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-phase oscillation of global regulons is orchestrated by a pole-specific organizer.
    Janakiraman B; Mignolet J; Narayanan S; Viollier PH; Radhakrishnan SK
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12550-12555. PubMed ID: 27791133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A localized adaptor protein performs distinct functions at the
    Wang J; Moerner WE; Shapiro L
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of podJ expression during the Caulobacter crescentus cell cycle.
    Crymes WB; Zhang D; Ely B
    J Bacteriol; 1999 Jul; 181(13):3967-73. PubMed ID: 10383964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytokinesis signals truncation of the PodJ polarity factor by a cell cycle-regulated protease.
    Chen JC; Hottes AK; McAdams HH; McGrath PT; Viollier PH; Shapiro L
    EMBO J; 2006 Jan; 25(2):377-86. PubMed ID: 16395329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caulobacter PopZ forms an intrinsically disordered hub in organizing bacterial cell poles.
    Holmes JA; Follett SE; Wang H; Meadows CP; Varga K; Bowman GR
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12490-12495. PubMed ID: 27791060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome Dynamics in Bacteria: Triggering Replication at the Opposite Location and Segregation in the Opposite Direction.
    Meléndez AB; Menikpurage IP; Mera PE
    mBio; 2019 Jul; 10(4):. PubMed ID: 31363028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of PodJ in Agrobacterium tumefaciens Leads to Ectopic Polar Growth, Branching, and Reduced Cell Division.
    Anderson-Furgeson JC; Zupan JR; Grangeon R; Zambryski PC
    J Bacteriol; 2016 Jul; 198(13):1883-1891. PubMed ID: 27137498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intergenerational continuity of cell shape dynamics in Caulobacter crescentus.
    Wright CS; Banerjee S; Iyer-Biswas S; Crosson S; Dinner AR; Scherer NF
    Sci Rep; 2015 Mar; 5():9155. PubMed ID: 25778096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of cellular differentiation in Caulobacter crescentus.
    Gober JW; Marques MV
    Microbiol Rev; 1995 Mar; 59(1):31-47. PubMed ID: 7708011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Asymmetric Cell Division in Caulobacter crescentus Using a Boolean Logic Approach.
    Sánchez-Osorio I; Hernández-Martínez CA; Martínez-Antonio A
    Results Probl Cell Differ; 2017; 61():1-21. PubMed ID: 28409298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein sequences and cellular factors required for polar localization of a histidine kinase in Caulobacter crescentus.
    Sciochetti SA; Lane T; Ohta N; Newton A
    J Bacteriol; 2002 Nov; 184(21):6037-49. PubMed ID: 12374838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control.
    Jenal U
    FEMS Microbiol Rev; 2000 Apr; 24(2):177-91. PubMed ID: 10717313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caulobacter crescentus intrinsic dimorphism provides a prompt bimodal response to copper stress.
    Lawarée E; Gillet S; Louis G; Tilquin F; Le Blastier S; Cambier P; Matroule JY
    Nat Microbiol; 2016 Jul; 1(9):16098. PubMed ID: 27562256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.