These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36418330)

  • 1. Sampling of structure and sequence space of small protein folds.
    Linsky TW; Noble K; Tobin AR; Crow R; Carter L; Urbauer JL; Baker D; Strauch EM
    Nat Commun; 2022 Nov; 13(1):7151. PubMed ID: 36418330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. De novo design of small beta barrel proteins.
    Kim DE; Jensen DR; Feldman D; Tischer D; Saleem A; Chow CM; Li X; Carter L; Milles L; Nguyen H; Kang A; Bera AK; Peterson FC; Volkman BF; Ovchinnikov S; Baker D
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2207974120. PubMed ID: 36897987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the space of protein geometries by computational design of de novo fold families.
    Pan X; Thompson MC; Zhang Y; Liu L; Fraser JS; Kelly MJS; Kortemme T
    Science; 2020 Aug; 369(6507):1132-1136. PubMed ID: 32855341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein design with L- and D-alpha-amino acid structures as the alphabet.
    Durani S
    Acc Chem Res; 2008 Oct; 41(10):1301-8. PubMed ID: 18642934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thoroughly sampling sequence space: large-scale protein design of structural ensembles.
    Larson SM; England JL; Desjarlais JR; Pande VS
    Protein Sci; 2002 Dec; 11(12):2804-13. PubMed ID: 12441379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced alphabet of prebiotic amino acids optimally encodes the conformational space of diverse extant protein folds.
    Solis AD
    BMC Evol Biol; 2019 Jul; 19(1):158. PubMed ID: 31362700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terminal sequence importance of de novo proteins from binary-patterned library: stable artificial proteins with 11- or 12-amino acid alphabet.
    Okura H; Takahashi T; Mihara H
    Protein Pept Lett; 2012 Jun; 19(6):673-9. PubMed ID: 22519540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting the stability determinants of a challenging de novo protein fold using massively parallel design and experimentation.
    Kim TE; Tsuboyama K; Houliston S; Martell CM; Phoumyvong CM; Lemak A; Haddox HK; Arrowsmith CH; Rocklin GJ
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2122676119. PubMed ID: 36191185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perturbing the energy landscape for improved packing during computational protein design.
    Maguire JB; Haddox HK; Strickland D; Halabiya SF; Coventry B; Griffin JR; Pulavarti SVSRK; Cummins M; Thieker DF; Klavins E; Szyperski T; DiMaio F; Baker D; Kuhlman B
    Proteins; 2021 Apr; 89(4):436-449. PubMed ID: 33249652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mega-scale experimental analysis of protein folding stability in biology and design.
    Tsuboyama K; Dauparas J; Chen J; Laine E; Mohseni Behbahani Y; Weinstein JJ; Mangan NM; Ovchinnikov S; Rocklin GJ
    Nature; 2023 Aug; 620(7973):434-444. PubMed ID: 37468638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A generic framework for hierarchical de novo protein design.
    Harteveld Z; Bonet J; Rosset S; Yang C; Sesterhenn F; Correia BE
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2206111119. PubMed ID: 36252041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global analysis of protein folding using massively parallel design, synthesis, and testing.
    Rocklin GJ; Chidyausiku TM; Goreshnik I; Ford A; Houliston S; Lemak A; Carter L; Ravichandran R; Mulligan VK; Chevalier A; Arrowsmith CH; Baker D
    Science; 2017 Jul; 357(6347):168-175. PubMed ID: 28706065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational de novo design of a four-helix bundle protein--DND_4HB.
    Murphy GS; Sathyamoorthy B; Der BS; Machius MC; Pulavarti SV; Szyperski T; Kuhlman B
    Protein Sci; 2015 Apr; 24(4):434-45. PubMed ID: 25287625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo protein design by inversion of the AlphaFold structure prediction network.
    Goverde CA; Wolf B; Khakzad H; Rosset S; Correia BE
    Protein Sci; 2023 Jun; 32(6):e4653. PubMed ID: 37165539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cornering and catching the common protein fold.
    Johnson MS
    Mol Med Today; 1995 Jul; 1(4):188-94. PubMed ID: 9415156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De Novo Protein Design for Novel Folds Using Guided Conditional Wasserstein Generative Adversarial Networks.
    Karimi M; Zhu S; Cao Y; Shen Y
    J Chem Inf Model; 2020 Dec; 60(12):5667-5681. PubMed ID: 32945673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the existing and potential structural space of proteins by large-scale multiple loop permutations.
    Dai L; Zhou Y
    J Mol Biol; 2011 May; 408(3):585-95. PubMed ID: 21376059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rosetta FunFolDes - A general framework for the computational design of functional proteins.
    Bonet J; Wehrle S; Schriever K; Yang C; Billet A; Sesterhenn F; Scheck A; Sverrisson F; Veselkova B; Vollers S; Lourman R; Villard M; Rosset S; Krey T; Correia BE
    PLoS Comput Biol; 2018 Nov; 14(11):e1006623. PubMed ID: 30452434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designed Protein Origami.
    Drobnak I; Ljubetič A; Gradišar H; Pisanski T; Jerala R
    Adv Exp Med Biol; 2016; 940():7-27. PubMed ID: 27677507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparks of function by de novo protein design.
    Chu AE; Lu T; Huang PS
    Nat Biotechnol; 2024 Feb; 42(2):203-215. PubMed ID: 38361073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.