These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 36418402)
21. Tankyrase Inhibitors Stimulate the Ability of Tankyrases to Bind Axin and Drive Assembly of β-Catenin Degradation-Competent Axin Puncta. Martino-Echarri E; Brocardo MG; Mills KM; Henderson BR PLoS One; 2016; 11(3):e0150484. PubMed ID: 26930278 [TBL] [Abstract][Full Text] [Related]
22. Tissue-Specific Regulation of the Wnt/β-Catenin Pathway by PAGE4 Inhibition of Tankyrase. Koirala S; Klein J; Zheng Y; Glenn NO; Eisemann T; Fon Tacer K; Miller DJ; Kulak O; Lu M; Finkelstein DB; Neale G; Tillman H; Vogel P; Strand DW; Lum L; Brautigam CA; Pascal JM; Clements WK; Potts PR Cell Rep; 2020 Jul; 32(3):107922. PubMed ID: 32698014 [TBL] [Abstract][Full Text] [Related]
23. Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells. Ma L; Wang X; Jia T; Wei W; Chua MS; So S Oncotarget; 2015 Sep; 6(28):25390-401. PubMed ID: 26246473 [TBL] [Abstract][Full Text] [Related]
24. Biochemical Analysis of Tankyrase Activity in Zebrafish In Vitro and In Vivo. Moon J; Amatruda JF Methods Mol Biol; 2016; 1481():95-100. PubMed ID: 27590155 [TBL] [Abstract][Full Text] [Related]
25. Disruption of Wnt/β-Catenin Signaling and Telomeric Shortening Are Inextricable Consequences of Tankyrase Inhibition in Human Cells. Kulak O; Chen H; Holohan B; Wu X; He H; Borek D; Otwinowski Z; Yamaguchi K; Garofalo LA; Ma Z; Wright W; Chen C; Shay JW; Zhang X; Lum L Mol Cell Biol; 2015 Jul; 35(14):2425-35. PubMed ID: 25939383 [TBL] [Abstract][Full Text] [Related]
26. Tankyrases: structure, function and therapeutic implications in cancer. Haikarainen T; Krauss S; Lehtio L Curr Pharm Des; 2014; 20(41):6472-88. PubMed ID: 24975604 [TBL] [Abstract][Full Text] [Related]
27. Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2. Qiu W; Lam R; Voytyuk O; Romanov V; Gordon R; Gebremeskel S; Vodsedalek J; Thompson C; Beletskaya I; Battaile KP; Pai EF; Rottapel R; Chirgadze NY Acta Crystallogr D Biol Crystallogr; 2014 Oct; 70(Pt 10):2740-53. PubMed ID: 25286857 [TBL] [Abstract][Full Text] [Related]
28. Structure, Dynamics, and Functionality of Tankyrase Inhibitor-Induced Degradasomes. Thorvaldsen TE; Pedersen NM; Wenzel EM; Schultz SW; Brech A; Liestøl K; Waaler J; Krauss S; Stenmark H Mol Cancer Res; 2015 Nov; 13(11):1487-501. PubMed ID: 26124443 [TBL] [Abstract][Full Text] [Related]
29. Structural basis and selectivity of tankyrase inhibition by a Wnt signaling inhibitor WIKI4. Haikarainen T; Venkannagari H; Narwal M; Obaji E; Lee HW; Nkizinkiko Y; Lehtiö L PLoS One; 2013; 8(6):e65404. PubMed ID: 23762361 [TBL] [Abstract][Full Text] [Related]
30. Tankyrase Regulates Neurite Outgrowth through Poly(ADP-ribosyl)ation-Dependent Activation of β-Catenin Signaling. Mashimo M; Kita M; Uno A; Nii M; Ishihara M; Honda T; Gotoh-Kinoshita Y; Nomura A; Nakamura H; Murayama T; Kizu R; Fujii T Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269974 [TBL] [Abstract][Full Text] [Related]
31. Zoning in on Tankyrases: A Brief Review on the Past, Present and Prospective Studies. Peters XQ; Malinga TH; Agoni C; Olotu FA; Soliman MES Anticancer Agents Med Chem; 2019; 19(16):1920-1934. PubMed ID: 31648650 [TBL] [Abstract][Full Text] [Related]
32. An Evolutionary Perspective on the Origin, Conservation and Binding Partner Acquisition of Tankyrases. Sowa ST; Bosetti C; Galera-Prat A; Johnson MS; Lehtiö L Biomolecules; 2022 Nov; 12(11):. PubMed ID: 36421702 [TBL] [Abstract][Full Text] [Related]
33. Functional subdomain in the ankyrin domain of tankyrase 1 required for poly(ADP-ribosyl)ation of TRF1 and telomere elongation. Seimiya H; Muramatsu Y; Smith S; Tsuruo T Mol Cell Biol; 2004 Mar; 24(5):1944-55. PubMed ID: 14966275 [TBL] [Abstract][Full Text] [Related]
34. mTOR signaling mediates resistance to tankyrase inhibitors in Wnt-driven colorectal cancer. Mashima T; Taneda Y; Jang MK; Mizutani A; Muramatsu Y; Yoshida H; Sato A; Tanaka N; Sugimoto Y; Seimiya H Oncotarget; 2017 Jul; 8(29):47902-47915. PubMed ID: 28615517 [TBL] [Abstract][Full Text] [Related]
35. Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease. Guettler S; LaRose J; Petsalaki E; Gish G; Scotter A; Pawson T; Rottapel R; Sicheri F Cell; 2011 Dec; 147(6):1340-54. PubMed ID: 22153077 [TBL] [Abstract][Full Text] [Related]
36. A FRET-based high-throughput screening platform for the discovery of chemical probes targeting the scaffolding functions of human tankyrases. Sowa ST; Vela-Rodríguez C; Galera-Prat A; Cázares-Olivera M; Prunskaite-Hyyryläinen R; Ignatev A; Lehtiö L Sci Rep; 2020 Jul; 10(1):12357. PubMed ID: 32704068 [TBL] [Abstract][Full Text] [Related]
37. Pleiotropic roles of tankyrase/PARP proteins in the establishment and maintenance of human naïve pluripotency. Zimmerlin L; Zambidis ET Exp Cell Res; 2020 May; 390(1):111935. PubMed ID: 32151493 [TBL] [Abstract][Full Text] [Related]
38. Tankyrase: a promising therapeutic target with pleiotropic action. Sagathia V; Patel C; Beladiya J; Patel S; Sheth D; Shah G Naunyn Schmiedebergs Arch Pharmacol; 2023 Dec; 396(12):3363-3374. PubMed ID: 37338576 [TBL] [Abstract][Full Text] [Related]