These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36418412)

  • 1. Genetic trends in CIMMYT's tropical maize breeding pipelines.
    Prasanna BM; Burgueño J; Beyene Y; Makumbi D; Asea G; Woyengo V; Tarekegne A; Magorokosho C; Wegary D; Ndhlela T; Zaman-Allah M; Matova PM; Mwansa K; Mashingaidze K; Fato P; Teklewold A; Vivek BS; Zaidi PH; Vinayan MT; Patne N; Rakshit S; Kumar R; Jat SL; Singh SB; Kuchanur PH; Lohithaswa HC; Singh NK; Koirala KB; Ahmed S; Vicente FS; Dhliwayo T; Cairns JE
    Sci Rep; 2022 Nov; 12(1):20110. PubMed ID: 36418412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximizing efficiency of genomic selection in CIMMYT's tropical maize breeding program.
    Atanda SA; Olsen M; Burgueño J; Crossa J; Dzidzienyo D; Beyene Y; Gowda M; Dreher K; Zhang X; Prasanna BM; Tongoona P; Danquah EY; Olaoye G; Robbins KR
    Theor Appl Genet; 2021 Jan; 134(1):279-294. PubMed ID: 33037897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments.
    Prasanna BM; Cairns JE; Zaidi PH; Beyene Y; Makumbi D; Gowda M; Magorokosho C; Zaman-Allah M; Olsen M; Das A; Worku M; Gethi J; Vivek BS; Nair SK; Rashid Z; Vinayan MT; Issa AB; San Vicente F; Dhliwayo T; Zhang X
    Theor Appl Genet; 2021 Jun; 134(6):1729-1752. PubMed ID: 33594449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of physiological genomic estimated breeding values (PGEBV) combining full hyperspectral and marker data across environments for grain yield under combined heat and drought stress in tropical maize (Zea mays L.).
    Trachsel S; Dhliwayo T; Gonzalez Perez L; Mendoza Lugo JA; Trachsel M
    PLoS One; 2019; 14(3):e0212200. PubMed ID: 30893307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic-based-breeding tools for tropical maize improvement.
    Chakradhar T; Hindu V; Reddy PS
    Genetica; 2017 Dec; 145(6):525-539. PubMed ID: 28875394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Genomic Estimated Breeding Values Results in Rapid Genetic Gains for Drought Tolerance in Maize.
    Vivek BS; Krishna GK; Vengadessan V; Babu R; Zaidi PH; Kha LQ; Mandal SS; Grudloyma P; Takalkar S; Krothapalli K; Singh IS; Ocampo ETM; Xingming F; Burgueño J; Azrai M; Singh RP; Crossa J
    Plant Genome; 2017 Mar; 10(1):. PubMed ID: 28464061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic prediction in CIMMYT maize and wheat breeding programs.
    Crossa J; Pérez P; Hickey J; Burgueño J; Ornella L; Cerón-Rojas J; Zhang X; Dreisigacker S; Babu R; Li Y; Bonnett D; Mathews K
    Heredity (Edinb); 2014 Jan; 112(1):48-60. PubMed ID: 23572121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic gains in early maturing maize hybrids developed by the International Maize and Wheat Improvement Center in Southern Africa during 2000-2018.
    Tarekegne A; Wegary D; Cairns JE; Zaman-Allah M; Beyene Y; Negera D; Teklewold A; Tesfaye K; Jumbo MB; Das B; Nhamucho EJ; Simpasa K; Kaonga KKE; Mashingaidze K; Thokozile N; Mhike X; Prasanna BM
    Front Plant Sci; 2023; 14():1321308. PubMed ID: 38293626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic gains with rapid-cycle genomic selection for combined drought and waterlogging tolerance in tropical maize (Zea mays L.).
    Das RR; Vinayan MT; Patel MB; Phagna RK; Singh SB; Shahi JP; Sarma A; Barua NS; Babu R; Seetharam K; Burgueño JA; Zaidi PH
    Plant Genome; 2020 Nov; 13(3):e20035. PubMed ID: 33217198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic Gains for Grain Yield in CIMMYT's Semi-Arid Wheat Yield Trials Grown in Suboptimal Environments.
    Crespo-Herrera LA; Crossa J; Huerta-Espino J; Vargas M; Mondal S; Velu G; Payne TS; Braun H; Singh RP
    Crop Sci; 2018; 58(5):1890-1898. PubMed ID: 33343013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomics-Assisted Breeding for Quantitative Disease Resistances in Small-Grain Cereals and Maize.
    Miedaner T; Boeven ALG; Gaikpa DS; Kistner MB; Grote CP
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Contribution of Synthetic Hexaploid Wheat to CIMMYT's Spring Bread Wheat Breeding Germplasm.
    Rosyara U; Kishii M; Payne T; Sansaloni CP; Singh RP; Braun HJ; Dreisigacker S
    Sci Rep; 2019 Aug; 9(1):12355. PubMed ID: 31451719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale.
    Marulanda JJ; Mi X; Melchinger AE; Xu JL; Würschum T; Longin CF
    Theor Appl Genet; 2016 Oct; 129(10):1901-13. PubMed ID: 27389871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grain yield genetic gains and changes in physiological related traits for CIMMYT's High Rainfall Wheat Screening Nursery tested across international environments.
    Gerard GS; Crespo-Herrera LA; Crossa J; Mondal S; Velu G; Juliana P; Huerta-Espino J; Vargas M; Rhandawa MS; Bhavani S; Braun H; Singh RP
    Field Crops Res; 2020 Apr; 249():107742. PubMed ID: 32255898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Cycling Genomic Selection in a Multiparental Tropical Maize Population.
    Zhang X; Pérez-Rodríguez P; Burgueño J; Olsen M; Buckler E; Atlin G; Prasanna BM; Vargas M; San Vicente F; Crossa J
    G3 (Bethesda); 2017 Jul; 7(7):2315-2326. PubMed ID: 28533335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global adaptation patterns of Australian and CIMMYT spring bread wheat.
    Mathews KL; Chapman SC; Trethowan R; Pfeiffer W; van Ginkel M; Crossa J; Payne T; Delacy I; Fox PN; Cooper M
    Theor Appl Genet; 2007 Oct; 115(6):819-35. PubMed ID: 17768603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root and canopy traits and adaptability genes explain drought tolerance responses in winter wheat.
    Nehe AS; Foulkes MJ; Ozturk I; Rasheed A; York L; Kefauver SC; Ozdemir F; Morgounov A
    PLoS One; 2021; 16(4):e0242472. PubMed ID: 33819270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic trends for yield and key agronomic traits in pre-commercial and commercial maize varieties between 2008 and 2020 in Uganda.
    Asea G; Kwemoi DB; Sneller C; Kasozi CL; Das B; Musundire L; Makumbi D; Beyene Y; Prasanna BM
    Front Plant Sci; 2023; 14():1020667. PubMed ID: 36968404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic Yield Gains In CIMMYT's International Elite Spring Wheat Yield Trials By Modeling The Genotype × Environment Interaction.
    Crespo-Herrera LA; Crossa J; Huerta-Espino J; Autrique E; Mondal S; Velu G; Vargas M; Braun HJ; Singh RP
    Crop Sci; 2017; 57():789-801. PubMed ID: 33343008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide association studies of grain yield and quality traits under optimum and low-nitrogen stress in tropical maize (Zea mays L.).
    Ndlovu N; Spillane C; McKeown PC; Cairns JE; Das B; Gowda M
    Theor Appl Genet; 2022 Dec; 135(12):4351-4370. PubMed ID: 36131140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.