These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36418603)

  • 21. CFD Assisted Evaluation of In Vitro Experiments on Bearingless Blood Pumps.
    Puentener P; Schuck M; Kolar JW
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1370-1378. PubMed ID: 33048670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental validation of the power law hemolysis model using a Couette shearing device.
    Froese V; Goubergrits L; Kertzscher U; Lommel M
    Artif Organs; 2024 May; 48(5):495-503. PubMed ID: 38146895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational fluid dynamics simulating of the FDA benchmark blood pump with different coefficient sets and scaler shear stress models used in the power-law hemolysis model.
    Onder A; Incebay O; Yapici R
    J Artif Organs; 2024 Aug; ():. PubMed ID: 39177925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of Vortices in Idealised Branching Vessels: A CFD Benchmark Study.
    Xue Y; Hellmuth R; Shin DH
    Cardiovasc Eng Technol; 2020 Oct; 11(5):544-559. PubMed ID: 32666327
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500.
    Janiga G
    Comput Biol Med; 2014 Apr; 47():113-9. PubMed ID: 24561349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An energy-dissipation-based power-law formulation for estimating hemolysis.
    Wu P; Groß-Hardt S; Boehning F; Hsu PL
    Biomech Model Mechanobiol; 2020 Apr; 19(2):591-602. PubMed ID: 31612342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation of numerically simulated ventricular flow patterns during left ventricular assist device support.
    Ghodrati M; Khienwad T; Maurer A; Moscato F; Zonta F; Schima H; Aigner P
    Int J Artif Organs; 2021 Jan; 44(1):30-38. PubMed ID: 32022612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Review of Hemolysis Prediction Models for Computational Fluid Dynamics.
    Yu H; Engel S; Janiga G; Thévenin D
    Artif Organs; 2017 Jul; 41(7):603-621. PubMed ID: 28643335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support.
    Taskin ME; Fraser KH; Zhang T; Gellman B; Fleischli A; Dasse KA; Griffith BP; Wu ZJ
    Artif Organs; 2010 Dec; 34(12):1099-113. PubMed ID: 20626739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison and experimental validation of fluid dynamic numerical models for a clinical ventricular assist device.
    Zhang J; Zhang P; Fraser KH; Griffith BP; Wu ZJ
    Artif Organs; 2013 Apr; 37(4):380-9. PubMed ID: 23441681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational Fluid Dynamics Turbulence Model and Experimental Study for a Fontan Cavopulmonary Assist Device.
    Sarfare S; Ali MS; Palazzolo A; Rodefeld M; Conover T; Figliola R; Giridharan G; Wampler R; Bennett E; Ivashchenko A
    J Biomech Eng; 2023 Nov; 145(11):. PubMed ID: 37535439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Empirical and Computational Evaluation of Hemolysis in a Microfluidic Extracorporeal Membrane Oxygenator Prototype.
    Imtiaz N; Poskus MD; Stoddard WA; Gaborski TR; Day SW
    Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930760
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On delayed transition to turbulence in an eccentric stenosis model for clean vs. noisy high-fidelity CFD.
    Haley AL; Valen-Sendstad K; Steinman DA
    J Biomech; 2021 Aug; 125():110588. PubMed ID: 34218038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow dynamics of a novel counterpulsation device characterized by CFD and PIV modeling.
    Giridharan GA; Lederer C; Berthe A; Goubergrits L; Hutzenlaub J; Slaughter MS; Dowling RD; Spence PA; Koenig SC
    Med Eng Phys; 2011 Dec; 33(10):1193-202. PubMed ID: 21680224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hemolysis Related to Turbulent Eddy Size Distributions Using Comparisons of Experiments to Computations.
    Ozturk M; O'Rear EA; Papavassiliou DV
    Artif Organs; 2015 Dec; 39(12):E227-39. PubMed ID: 26412190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational Modeling of the Penn State Fontan Circulation Assist Device.
    Good BC; Ponnaluri SV; Weiss WJ; Manning KB
    ASAIO J; 2022 Dec; 68(12):1513-1522. PubMed ID: 35421006
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of flow field and hemolysis index in axial flow blood pump by computational fluid dynamics-discrete element method.
    Cheng L; Tan J; Yun Z; Wang S; Yu Z
    Int J Artif Organs; 2021 Jan; 44(1):46-54. PubMed ID: 32393086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational fluid dynamic simulations of a cavopulmonary assist device for failing Fontan circulation.
    Lin WCP; Doyle MG; Roche SL; Honjo O; Forbes TL; Amon CH
    J Thorac Cardiovasc Surg; 2019 Nov; 158(5):1424-1433.e5. PubMed ID: 31005303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.