These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36418613)

  • 1. In situ sequence-specific visualization of single methylated cytosine on tissue sections using ICON probe and rolling-circle amplification.
    Kitazawa S; Haraguchi R; Takaoka Y; Kitazawa R
    Histochem Cell Biol; 2023 Mar; 159(3):263-273. PubMed ID: 36418613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphology-oriented epigenetic research.
    Kitazawa S; Haraguchi R; Kitazawa R
    Histochem Cell Biol; 2018 Jul; 150(1):3-12. PubMed ID: 29721644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of short repeated genomic sequences on metaphase chromosomes using padlock probes and target primed rolling circle DNA synthesis.
    Lohmann JS; Stougaard M; Koch J
    BMC Mol Biol; 2007 Nov; 8():103. PubMed ID: 17997865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High specific and ultrasensitive isothermal detection of microRNA by padlock probe-based exponential rolling circle amplification.
    Liu H; Li L; Duan L; Wang X; Xie Y; Tong L; Wang Q; Tang B
    Anal Chem; 2013 Aug; 85(16):7941-7. PubMed ID: 23855808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ICON probes: synthesis and DNA methylation typing.
    Tainaka K; Okamoto A
    Curr Protoc Nucleic Acid Chem; 2011 Dec; Chapter 8():Unit 8.7.1-17. PubMed ID: 22147422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive and label-free DNA methylation detection by ligation-mediated hyperbranched rolling circle amplification.
    Cao A; Zhang CY
    Anal Chem; 2012 Jul; 84(14):6199-205. PubMed ID: 22715985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging of individual transcripts by amplification-based single-molecule fluorescence in situ hybridization.
    Lin C; Jiang M; Liu L; Chen X; Zhao Y; Chen L; Hong Y; Wang X; Hong C; Yao X; Ke R
    N Biotechnol; 2021 Mar; 61():116-123. PubMed ID: 33301924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ detection of non-polyadenylated RNA molecules using Turtle Probes and target primed rolling circle PRINS.
    Stougaard M; Lohmann JS; Zajac M; Hamilton-Dutoit S; Koch J
    BMC Biotechnol; 2007 Oct; 7():69. PubMed ID: 17945012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-osmium complexes: recent developments in the operative chemical analysis of DNA epigenetic modifications.
    Okamoto A
    ChemMedChem; 2014 Sep; 9(9):1958-65. PubMed ID: 24989699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-specific microscopic visualization of DNA methylation status at satellite repeats in individual cell nuclei and chromosomes.
    Li Y; Miyanari Y; Shirane K; Nitta H; Kubota T; Ohashi H; Okamoto A; Sasaki H
    Nucleic Acids Res; 2013 Oct; 41(19):e186. PubMed ID: 23990328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Single-Molecule RNA Genotyping Using Padlock Probes and Rolling Circle Amplification.
    Krzywkowski T; Hauling T; Nilsson M
    Methods Mol Biol; 2017; 1492():59-76. PubMed ID: 27822856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electrochemical strategy with tetrahedron rolling circle amplification for ultrasensitive detection of DNA methylation.
    Liu H; Luo J; Fang L; Huang H; Deng J; Huang J; Zhang S; Li Y; Zheng J
    Biosens Bioelectron; 2018 Dec; 121():47-53. PubMed ID: 30196047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photothermal mediated rolling circle amplification toward specific and direct in situ mRNA detection.
    Liu D; Li W; Yang M; Qiu L; Pian H; Huang Y; Chen M; Zheng Z
    Biosens Bioelectron; 2021 Nov; 192():113507. PubMed ID: 34330037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ hybridization assay for circular RNA visualization based on padlock probe and rolling circle amplification.
    Lin C; Xiao Z; Zhang X; Wu G
    Biochem Biophys Res Commun; 2022 Jun; 610():30-34. PubMed ID: 35430449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal amplification of padlock probes by rolling circle replication.
    Banér J; Nilsson M; Mendel-Hartvig M; Landegren U
    Nucleic Acids Res; 1998 Nov; 26(22):5073-8. PubMed ID: 9801302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylation-Specific Multiplex Ligation-Dependent Probe Amplification (MS-MLPA).
    Moelans CB; Atanesyan L; Savola SP; van Diest PJ
    Methods Mol Biol; 2018; 1708():537-549. PubMed ID: 29224162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence biosensor for DNA methyltransferase activity and related inhibitor detection based on methylation-sensitive cleavage primer triggered hyperbranched rolling circle amplification.
    Chen L; Zhang Y; Xia Q; Luo F; Guo L; Qiu B; Lin Z
    Anal Chim Acta; 2020 Jul; 1122():1-8. PubMed ID: 32503739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Microchannel Shape and Ultrasonic Mixing on Microfluidic Padlock Probe Rolling Circle Amplification (RCA) Reactions.
    Ishigaki Y; Sato K
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive detection of DNA methyltransferase using the dendritic rolling circle amplification-induced fluorescence.
    Song W; Luan Y; Guo X; He P; Zhang X
    Anal Chim Acta; 2017 Mar; 956():57-62. PubMed ID: 28093126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An osmium-DNA interstrand complex: application to facile DNA methylation analysis.
    Tanaka K; Tainaka K; Umemoto T; Nomura A; Okamoto A
    J Am Chem Soc; 2007 Nov; 129(46):14511-7. PubMed ID: 17963391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.