These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 3641879)

  • 1. Phenotypic switching to long cilia effected by various proteases: results with Dendraster excentricus and Stronglyocentrotus purpuratus blastulae.
    Riederer-Henderson MA
    J Exp Zool; 1986 Dec; 240(3):327-33. PubMed ID: 3641879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of theophylline on expression of the long cilia phenotype in sand dollar blastulae.
    Riederer-Henderson MA
    J Exp Zool; 1988 Apr; 246(1):17-22. PubMed ID: 2838565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Earliest ciliary swimming effects vertical transport of planktonic embryos in turbulence and shear flow.
    McDonald KA
    J Exp Biol; 2012 Jan; 215(Pt 1):141-51. PubMed ID: 22162862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A synthetic derivative of plant allylpolyalkoxybenzenes induces selective loss of motile cilia in sea urchin embryos.
    Semenova MN; Tsyganov DV; Yakubov AP; Kiselyov AS; Semenov VV
    ACS Chem Biol; 2008 Feb; 3(2):95-100. PubMed ID: 18278850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid induction of a hyperciliated phenotype in zinc-arrested sea urchin embryos by theophylline.
    Stephens RE
    J Exp Zool; 1994 Jun; 269(2):106-15. PubMed ID: 8207382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ciliary elongation in blastulae of Arbacia punctulata induced by trypsin.
    Riederer-Henderson MA; Rosenbaum JL
    Dev Biol; 1979 Jun; 70(2):500-9. PubMed ID: 478172
    [No Abstract]   [Full Text] [Related]  

  • 7. Unequal cleavage and the differentiation of echinoid primary mesenchyme.
    Langelan RE; Whiteley AH
    Dev Biol; 1985 Jun; 109(2):464-75. PubMed ID: 3996759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterochronic developmental shift caused by thyroid hormone in larval sand dollars and its implications for phenotypic plasticity and the evolution of nonfeeding development.
    Heyland A; Hodin J
    Evolution; 2004 Mar; 58(3):524-38. PubMed ID: 15119437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterotrimeric kinesin-II is required for the assembly of motile 9+2 ciliary axonemes on sea urchin embryos.
    Morris RL; Scholey JM
    J Cell Biol; 1997 Sep; 138(5):1009-22. PubMed ID: 9281580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ciliogenesis in sea urchin embryos--a subroutine in the program of development.
    Stephens RE
    Bioessays; 1995 Apr; 17(4):331-40. PubMed ID: 7741725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that hatching enzyme of the sea urchin Strongylocentrotus purpuratus is a chymotrypsin-like protease.
    Post LL; Schuel R; Schuel H
    Biochem Cell Biol; 1988 Nov; 66(11):1200-9. PubMed ID: 3072014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative studies on particulate acid phosphatases in sea urchin eggs.
    Yokota Y; Nakano E
    Comp Biochem Physiol B; 1982; 71(4):563-7. PubMed ID: 7083814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterisation of SALMFamide neuropeptides in sea urchins.
    Elphick MR; Thorndyke MC
    J Exp Biol; 2005 Nov; 208(Pt 22):4273-82. PubMed ID: 16272250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rapidly diverging EGF protein regulates species-specific signal transduction in early sea urchin development.
    Kamei N; Swanson WJ; Glabe CG
    Dev Biol; 2000 Sep; 225(2):267-76. PubMed ID: 10985849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantal tektin synthesis and ciliary length in sea-urchin embryos.
    Stephens RE
    J Cell Sci; 1989 Mar; 92 ( Pt 3)():403-13. PubMed ID: 2592446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of mechanical properties of the blastula wall reveal which hypothesized mechanisms of primary invagination are physically plausible in the sea urchin Strongylocentrotus purpuratus.
    Davidson LA; Oster GF; Keller RE; Koehl MA
    Dev Biol; 1999 May; 209(2):221-38. PubMed ID: 10328917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular chaperones in cilia and flagella: implications for protein turnover.
    Stephens RE; Lemieux NA
    Cell Motil Cytoskeleton; 1999 Dec; 44(4):274-83. PubMed ID: 10602256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the larval nervous system of the sand dollar, Dendraster excentricus.
    Burke RD
    Cell Tissue Res; 1983; 229(1):145-54. PubMed ID: 6831540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cortical granule serine protease CGSP1 of the sea urchin, Strongylocentrotus purpuratus, is autocatalytic and contains a low-density lipoprotein receptor-like domain.
    Haley SA; Wessel GM
    Dev Biol; 1999 Jul; 211(1):1-10. PubMed ID: 10373300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tubulin and tektin in sea urchin embryonic cilia: pathways of protein incorporation during turnover and regeneration.
    Stephens RE
    J Cell Sci; 1994 Feb; 107 ( Pt 2)():683-92. PubMed ID: 8207090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.