These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 36418828)
1. Insights on applications of bentonite clays for the removal of dyes and heavy metals from wastewater: a review. Dhar AK; Himu HA; Bhattacharjee M; Mostufa MG; Parvin F Environ Sci Pollut Res Int; 2023 Jan; 30(3):5440-5474. PubMed ID: 36418828 [TBL] [Abstract][Full Text] [Related]
2. Clay based nanocomposites for removal of heavy metals from water: A review. Yadav VB; Gadi R; Kalra S J Environ Manage; 2019 Feb; 232():803-817. PubMed ID: 30529868 [TBL] [Abstract][Full Text] [Related]
3. A comprehensive review on sustainable clay-based geopolymers for wastewater treatment: circular economy and future outlook. Maged A; El-Fattah HA; Kamel RM; Kharbish S; Elgarahy AM Environ Monit Assess; 2023 May; 195(6):693. PubMed ID: 37204517 [TBL] [Abstract][Full Text] [Related]
4. Recent advancements in engineered biopolymeric-nanohybrids: A greener approach for adsorptive-remediation of noxious metals from aqueous matrices. Rizwan K; Babar ZB; Munir S; Arshad A; Rauf A Environ Res; 2022 Dec; 215(Pt 3):114398. PubMed ID: 36174757 [TBL] [Abstract][Full Text] [Related]
5. The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review. Barakan S; Aghazadeh V Environ Sci Pollut Res Int; 2021 Jan; 28(3):2572-2599. PubMed ID: 33113058 [TBL] [Abstract][Full Text] [Related]
6. Polymeric hydrogels-based materials for wastewater treatment. Ahmaruzzaman M; Roy P; Bonilla-Petriciolet A; Badawi M; Ganachari SV; Shetti NP; Aminabhavi TM Chemosphere; 2023 Aug; 331():138743. PubMed ID: 37105310 [TBL] [Abstract][Full Text] [Related]
7. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Burakov AE; Galunin EV; Burakova IV; Kucherova AE; Agarwal S; Tkachev AG; Gupta VK Ecotoxicol Environ Saf; 2018 Feb; 148():702-712. PubMed ID: 29174989 [TBL] [Abstract][Full Text] [Related]
8. A review on synthesis methods and recent applications of nanomaterial in wastewater treatment: Challenges and future perspectives. Saravanan A; Kumar PS; Hemavathy RV; Jeevanantham S; Jawahar MJ; Neshaanthini JP; Saravanan R Chemosphere; 2022 Nov; 307(Pt 1):135713. PubMed ID: 35843436 [TBL] [Abstract][Full Text] [Related]
9. A review of the application of sea material shells as low cost and effective bio-adsorbent for removal of heavy metals from wastewater. Tamjidi S; Ameri A Environ Sci Pollut Res Int; 2020 Sep; 27(25):31105-31119. PubMed ID: 32533472 [TBL] [Abstract][Full Text] [Related]
10. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: a review. Momina ; Shahadat M; Isamil S RSC Adv; 2018 Jul; 8(43):24571-24587. PubMed ID: 35539168 [TBL] [Abstract][Full Text] [Related]
11. Natural-clay-reinforced hydrogel adsorbent: Rapid adsorption of heavy-metal ions and dyes from textile wastewater. Wang ZK; Li TT; Peng HK; Ren HT; Lin JH; Lou CW Water Environ Res; 2022 Apr; 94(4):e10698. PubMed ID: 35373412 [TBL] [Abstract][Full Text] [Related]
12. Polysaccharide nanocomposites in wastewater treatment: A review. Al-Hazmi HE; Łuczak J; Habibzadeh S; Hasanin MS; Mohammadi A; Esmaeili A; Kim SJ; Khodadadi Yazdi M; Rabiee N; Badawi M; Saeb MR Chemosphere; 2024 Jan; 347():140578. PubMed ID: 37939921 [TBL] [Abstract][Full Text] [Related]
13. Hydroxyapatite-based adsorbents: Applications in sequestering heavy metals and dyes. Amenaghawon AN; Anyalewechi CL; Darmokoesoemo H; Kusuma HS J Environ Manage; 2022 Jan; 302(Pt A):113989. PubMed ID: 34710761 [TBL] [Abstract][Full Text] [Related]
14. Recent advances in conducting polymer-based magnetic nanosorbents for dyes and heavy metal removal: fabrication, applications, and perspective. Goswami MK; Srivastava A; Dohare RK; Tiwari AK; Srivastav A Environ Sci Pollut Res Int; 2023 Jun; 30(29):73031-73060. PubMed ID: 37195615 [TBL] [Abstract][Full Text] [Related]
15. Oil palm biomass as an adsorbent for heavy metals. Vakili M; Rafatullah M; Ibrahim MH; Abdullah AZ; Salamatinia B; Gholami Z Rev Environ Contam Toxicol; 2014; 232():61-88. PubMed ID: 24984835 [TBL] [Abstract][Full Text] [Related]
16. Significance of conducting polyaniline based composites for the removal of dyes and heavy metals from aqueous solution and wastewaters - A review. Senguttuvan S; Senthilkumar P; Janaki V; Kamala-Kannan S Chemosphere; 2021 Mar; 267():129201. PubMed ID: 33338713 [TBL] [Abstract][Full Text] [Related]
17. Recent advances in the removal of dyes from wastewater using low-cost adsorbents. Bilal M; Ihsanullah I; Hassan Shah MU; Bhaskar Reddy AV; Aminabhavi TM J Environ Manage; 2022 Nov; 321():115981. PubMed ID: 36029630 [TBL] [Abstract][Full Text] [Related]
18. A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. Han H; Rafiq MK; Zhou T; Xu R; Mašek O; Li X J Hazard Mater; 2019 May; 369():780-796. PubMed ID: 30851518 [TBL] [Abstract][Full Text] [Related]
19. A critical review on the separation of heavy metal(loid)s from the contaminated water using various agricultural wastes. Younas F; Younas S; Bibi I; Farooqi ZUR; Hameed MA; Mohy-Ud-Din W; Shehzad MT; Hussain MM; Shakil Q; Shahid M; Niazi NK Int J Phytoremediation; 2024 Feb; 26(3):349-368. PubMed ID: 37559458 [TBL] [Abstract][Full Text] [Related]
20. Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review. Hacıosmanoğlu GG; Mejías C; Martín J; Santos JL; Aparicio I; Alonso E J Environ Manage; 2022 Sep; 317():115397. PubMed ID: 35660825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]