These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36418863)

  • 41. Induction of defense responses against Magnaporthe oryzae in rice seedling by a new potential biocontrol agent Streptomyces JD211.
    Shao Z; Li Z; Fu Y; Wen Y; Wei S
    J Basic Microbiol; 2018 Aug; 58(8):686-697. PubMed ID: 29901825
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trihydroxynaphthalene reductase from Magnaporthe grisea: realization of an active center inhibitor and elucidation of the kinetic mechanism.
    Thompson JE; Basarab GS; Andersson A; Lindqvist Y; Jordan DB
    Biochemistry; 1997 Feb; 36(7):1852-60. PubMed ID: 9048570
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Impact of Blast Disease: Past, Present, and Future.
    Valent B
    Methods Mol Biol; 2021; 2356():1-18. PubMed ID: 34236673
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Against the grain: safeguarding rice from rice blast disease.
    Skamnioti P; Gurr SJ
    Trends Biotechnol; 2009 Mar; 27(3):141-50. PubMed ID: 19187990
    [TBL] [Abstract][Full Text] [Related]  

  • 45.
    Deng S; Sun W; Dong L; Cui G; Deng YZ
    mSphere; 2019 Sep; 4(5):. PubMed ID: 31484736
    [No Abstract]   [Full Text] [Related]  

  • 46. Hog1p activation by marasmic acid through inhibition of the histidine kinase Sln1p.
    Jacob S; Schüffler A; Thines E
    Pest Manag Sci; 2016 Jun; 72(6):1268-74. PubMed ID: 26888741
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In Silico Identification of Potential Inhibitor Against a Fungal Histone Deacetylase, RPD3 from
    Shanmugam G; Kim T; Jeon J
    Molecules; 2019 May; 24(11):. PubMed ID: 31151320
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Plant Homeodomain Protein Clp1 Regulates Fungal Development, Virulence, and Autophagy Homeostasis in Magnaporthe oryzae.
    Wang J; Huang Z; Huang P; Wang Q; Li Y; Liu XH; Lin FC; Lu J
    Microbiol Spectr; 2022 Oct; 10(5):e0102122. PubMed ID: 36036638
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements.
    Yoshida K; Saunders DG; Mitsuoka C; Natsume S; Kosugi S; Saitoh H; Inoue Y; Chuma I; Tosa Y; Cano LM; Kamoun S; Terauchi R
    BMC Genomics; 2016 May; 17():370. PubMed ID: 27194050
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A lipophilic cation protects crops against fungal pathogens by multiple modes of action.
    Steinberg G; Schuster M; Gurr SJ; Schrader TA; Schrader M; Wood M; Early A; Kilaru S
    Nat Commun; 2020 Mar; 11(1):1608. PubMed ID: 32231209
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monitoring and characterization of Magnaporthe grisea isolates with decreased sensitivity to scytalone dehydratase inhibitors.
    Sawada H; Sugihara M; Takagaki M; Nagayama K
    Pest Manag Sci; 2004 Aug; 60(8):777-85. PubMed ID: 15307669
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The G143A/S substitution of mitochondrially encoded cytochrome b (Cytb) in Magnaporthe oryzae confers resistance to quinone outside inhibitors.
    Li T; Xu J; Gao H; Cao Z; Wang J; Cai Y; Duan Y; Zhou M
    Pest Manag Sci; 2022 Nov; 78(11):4850-4858. PubMed ID: 36181417
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibitory Effects of Linear Lipopeptides From a Marine
    Chakraborty M; Mahmud NU; Gupta DR; Tareq FS; Shin HJ; Islam T
    Front Microbiol; 2020; 11():665. PubMed ID: 32425899
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Abc3-mediated efflux of an endogenous digoxin-like steroidal glycoside by Magnaporthe oryzae is necessary for host invasion during blast disease.
    Patkar RN; Xue YK; Shui G; Wenk MR; Naqvi NI
    PLoS Pathog; 2012; 8(8):e1002888. PubMed ID: 22927822
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Co-transformation mediated stacking of blast resistance genes Pi54 and Pi54rh in rice provides broad spectrum resistance against Magnaporthe oryzae.
    Kumari M; Rai AK; Devanna BN; Singh PK; Kapoor R; Rajashekara H; Prakash G; Sharma V; Sharma TR
    Plant Cell Rep; 2017 Nov; 36(11):1747-1755. PubMed ID: 28905253
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Basic Guide to the Growth and Manipulation of the Blast Fungus, Magnaporthe oryzae.
    Molinari C; Talbot NJ
    Curr Protoc; 2022 Aug; 2(8):e523. PubMed ID: 35997707
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chrysoviruses in
    Moriyama H; Urayama SI; Higashiura T; Le TM; Komatsu K
    Viruses; 2018 Dec; 10(12):. PubMed ID: 30544784
    [No Abstract]   [Full Text] [Related]  

  • 58. [Recent advances in understanding the innate immune mechanisms and developing new disease resistance breeding strategies against the rice blast fungus Magnaporthe oryzae in rice].
    He F; Zhang H; Liu J; Wang Z; Wang G
    Yi Chuan; 2014 Aug; 36(8):756-65. PubMed ID: 25143273
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Feruloyl esterase Fae1 is required specifically for host colonisation by the rice-blast fungus Magnaporthe oryzae.
    Thaker A; Mehta K; Patkar R
    Curr Genet; 2022 Feb; 68(1):97-113. PubMed ID: 34524467
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genome-wide association mapping of virulence gene in rice blast fungus Magnaporthe oryzae using a genotyping by sequencing approach.
    Korinsak S; Tangphatsornruang S; Pootakham W; Wanchana S; Plabpla A; Jantasuriyarat C; Patarapuwadol S; Vanavichit A; Toojinda T
    Genomics; 2019 Jul; 111(4):661-668. PubMed ID: 29775784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.