These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 36418893)
1. Linked fire activity and climate whiplash in California during the early Holocene. Homann J; Oster JL; de Wet CB; Breitenbach SFM; Hoffmann T Nat Commun; 2022 Nov; 13(1):7175. PubMed ID: 36418893 [TBL] [Abstract][Full Text] [Related]
2. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests. Brubaker LB; Higuera PE; Rupp TS; Olson MA; Anderson PM; Hu FS Ecology; 2009 Jul; 90(7):1788-801. PubMed ID: 19694128 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear woody vegetation effects on Holocene fire activity across the world's highlands. Li Y; Zhang D Sci Total Environ; 2024 Nov; 949():174952. PubMed ID: 39059651 [TBL] [Abstract][Full Text] [Related]
5. The importance of geography in forecasting future fire patterns under climate change. Syphard AD; Velazco SJE; Rose MB; Franklin J; Regan HM Proc Natl Acad Sci U S A; 2024 Aug; 121(32):e2310076121. PubMed ID: 39074287 [TBL] [Abstract][Full Text] [Related]
6. Char and soot records of the Holocene fire history and its implications for climate-vegetation change and human activities within the Guanzhong Basin, southern Loess Plateau, China. Zhang Y; Xiao Q; Zhu Y; Wang N; Wu M; Li Y; Li J; Chen D; Huang X; Wang S; Cao P; Jin Y; Xu F; Wang C Sci Total Environ; 2024 Feb; 911():168564. PubMed ID: 37981130 [TBL] [Abstract][Full Text] [Related]
7. Recent bark beetle outbreaks influence wildfire severity in mixed-conifer forests of the Sierra Nevada, California, USA. Wayman RB; Safford HD Ecol Appl; 2021 Apr; 31(3):e02287. PubMed ID: 33426715 [TBL] [Abstract][Full Text] [Related]
8. Arctic and boreal paleofire records reveal drivers of fire activity and departures from Holocene variability. Hoecker TJ; Higuera PE; Kelly R; Hu FS Ecology; 2020 Sep; 101(9):e03096. PubMed ID: 32386341 [TBL] [Abstract][Full Text] [Related]
9. Adapting western North American forests to climate change and wildfires: 10 common questions. Prichard SJ; Hessburg PF; Hagmann RK; Povak NA; Dobrowski SZ; Hurteau MD; Kane VR; Keane RE; Kobziar LN; Kolden CA; North M; Parks SA; Safford HD; Stevens JT; Yocom LL; Churchill DJ; Gray RW; Huffman DW; Lake FK; Khatri-Chhetri P Ecol Appl; 2021 Dec; 31(8):e02433. PubMed ID: 34339088 [TBL] [Abstract][Full Text] [Related]
10. Post-fire forest regeneration shows limited climate tracking and potential for drought-induced type conversion. Young DJN; Werner CM; Welch KR; Young TP; Safford HD; Latimer AM Ecology; 2019 Feb; 100(2):e02571. PubMed ID: 30516290 [TBL] [Abstract][Full Text] [Related]
11. Increasing fire and the decline of fire adapted black spruce in the boreal forest. Baltzer JL; Day NJ; Walker XJ; Greene D; Mack MC; Alexander HD; Arseneault D; Barnes J; Bergeron Y; Boucher Y; Bourgeau-Chavez L; Brown CD; Carrière S; Howard BK; Gauthier S; Parisien MA; Reid KA; Rogers BM; Roland C; Sirois L; Stehn S; Thompson DK; Turetsky MR; Veraverbeke S; Whitman E; Yang J; Johnstone JF Proc Natl Acad Sci U S A; 2021 Nov; 118(45):. PubMed ID: 34697246 [TBL] [Abstract][Full Text] [Related]
12. Robust projections of future fire probability for the conterminous United States. Gao P; Terando AJ; Kupfer JA; Morgan Varner J; Stambaugh MC; Lei TL; Kevin Hiers J Sci Total Environ; 2021 Oct; 789():147872. PubMed ID: 34082198 [TBL] [Abstract][Full Text] [Related]
13. Global increase in wildfire risk due to climate-driven declines in fuel moisture. Ellis TM; Bowman DMJS; Jain P; Flannigan MD; Williamson GJ Glob Chang Biol; 2022 Feb; 28(4):1544-1559. PubMed ID: 34800319 [TBL] [Abstract][Full Text] [Related]
14. Relationships of climate, human activity, and fire history to spatiotemporal variation in annual fire probability across California. Park IW; Mann ML; Flint LE; Flint AL; Moritz M PLoS One; 2021; 16(11):e0254723. PubMed ID: 34731170 [TBL] [Abstract][Full Text] [Related]
15. Fire catalyzed rapid ecological change in lowland coniferous forests of the Pacific Northwest over the past 14,000 years. Crausbay SD; Higuera PE; Sprugel DG; Brubaker LB Ecology; 2017 Sep; 98(9):2356-2369. PubMed ID: 28500791 [TBL] [Abstract][Full Text] [Related]
16. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Kelly R; Chipman ML; Higuera PE; Stefanova I; Brubaker LB; Hu FS Proc Natl Acad Sci U S A; 2013 Aug; 110(32):13055-60. PubMed ID: 23878258 [TBL] [Abstract][Full Text] [Related]
17. Can wildland fire management alter 21st-century subalpine fire and forests in Grand Teton National Park, Wyoming, USA? Hansen WD; Abendroth D; Rammer W; Seidl R; Turner MG Ecol Appl; 2020 Mar; 30(2):e02030. PubMed ID: 31674698 [TBL] [Abstract][Full Text] [Related]
18. Fixing a snag in carbon emissions estimates from wildfires. Stenzel JE; Bartowitz KJ; Hartman MD; Lutz JA; Kolden CA; Smith AMS; Law BE; Swanson ME; Larson AJ; Parton WJ; Hudiburg TW Glob Chang Biol; 2019 Nov; 25(11):3985-3994. PubMed ID: 31148284 [TBL] [Abstract][Full Text] [Related]
19. Vegetation limits the impact of a warm climate on boreal wildfires. Girardin MP; Ali AA; Carcaillet C; Blarquez O; Hély C; Terrier A; Genries A; Bergeron Y New Phytol; 2013 Sep; 199(4):1001-1011. PubMed ID: 23691916 [TBL] [Abstract][Full Text] [Related]
20. Resilience of lake biogeochemistry to boreal-forest wildfires during the late Holocene. Chipman ML; Hu FS Biol Lett; 2019 Aug; 15(8):20190390. PubMed ID: 31455173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]