These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36418910)

  • 21. Tissue engineering of the retina: from organoids to microfluidic chips.
    Marcos LF; Wilson SL; Roach P
    J Tissue Eng; 2021; 12():20417314211059876. PubMed ID: 34917332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Retinal organoids on-a-chip: a micro-millifluidic bioreactor for long-term organoid maintenance.
    Xue Y; Seiler MJ; Tang WC; Wang JY; Delgado J; McLelland BT; Nistor G; Keirstead HS; Browne AW
    Lab Chip; 2021 Sep; 21(17):3361-3377. PubMed ID: 34236056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication and Use of a Pumpless Microfluidic Lymphatic Vessel Chip.
    Fathi P; Esch MB
    Methods Mol Biol; 2022; 2373():177-199. PubMed ID: 34520013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioreactor Technologies for Enhanced Organoid Culture.
    Licata JP; Schwab KH; Har-El YE; Gerstenhaber JA; Lelkes PI
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids.
    Renner H; Grabos M; Becker KJ; Kagermeier TE; Wu J; Otto M; Peischard S; Zeuschner D; TsyTsyura Y; Disse P; Klingauf J; Leidel SA; Seebohm G; Schöler HR; Bruder JM
    Elife; 2020 Nov; 9():. PubMed ID: 33138918
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 3D Toolbox to Enhance Physiological Relevance of Human Tissue Models.
    Picollet-D'hahan N; Dolega ME; Liguori L; Marquette C; Le Gac S; Gidrol X; Martin DK
    Trends Biotechnol; 2016 Sep; 34(9):757-769. PubMed ID: 27497676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An integrated microfluidic bubble pocket for long-term perfused three-dimensional intestine-on-a-chip model.
    Lee KKP; Matsu-Ura T; Rosselot AE; Broda TR; Wells JM; Hong CI
    Biomicrofluidics; 2021 Jan; 15(1):014110. PubMed ID: 33643512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organoid and Spheroid Tumor Models: Techniques and Applications.
    Gunti S; Hoke ATK; Vu KP; London NR
    Cancers (Basel); 2021 Feb; 13(4):. PubMed ID: 33669619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thyroid-on-a-Chip: An Organoid Platform for In Vitro Assessment of Endocrine Disruption.
    Carvalho DJ; Kip AM; Romitti M; Nazzari M; Tegel A; Stich M; Krause C; Caiment F; Costagliola S; Moroni L; Giselbrecht S
    Adv Healthc Mater; 2023 Mar; 12(8):e2201555. PubMed ID: 36546709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D organ-on-a-chip: The convergence of microphysiological systems and organoids.
    Baptista LS; Porrini C; Kronemberger GS; Kelly DJ; Perrault CM
    Front Cell Dev Biol; 2022; 10():1043117. PubMed ID: 36478741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional microfluidics with dynamic fluidic perturbation promotes viability and uniformity of human cerebral organoids.
    Abdulla A; Chen S; Chen Z; Wang Y; Yan H; Chen R; Ahmad KZ; Liu K; Yan C; He J; Jiang L; Ding X
    Biosens Bioelectron; 2023 Nov; 240():115635. PubMed ID: 37651948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidics and Organoids, the Power Couple of Developmental Biology and Oncology Studies.
    Hetzel LA; Ali A; Corbo V; Hankemeier T
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37446057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Synthetic Hydrogel, VitroGel
    Cherne MD; Sidar B; Sebrell TA; Sanchez HS; Heaton K; Kassama FJ; Roe MM; Gentry AB; Chang CB; Walk ST; Jutila M; Wilking JN; Bimczok D
    Front Pharmacol; 2021; 12():707891. PubMed ID: 34552484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent methods of droplet microfluidics and their applications in spheroids and organoids.
    Wang Y; Liu M; Zhang Y; Liu H; Han L
    Lab Chip; 2023 Mar; 23(5):1080-1096. PubMed ID: 36628972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developmentally inspired human 'organs on chips'.
    Ingber DE
    Development; 2018 May; 145(16):. PubMed ID: 29776965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. One-Stop Microfluidic Assembly of Human Brain Organoids To Model Prenatal Cannabis Exposure.
    Ao Z; Cai H; Havert DJ; Wu Z; Gong Z; Beggs JM; Mackie K; Guo F
    Anal Chem; 2020 Mar; 92(6):4630-4638. PubMed ID: 32070103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards Automation in 3D Cell Culture: Selective and Gentle High-Throughput Handling of Spheroids and Organoids via Novel Pick-Flow-Drop Principle.
    Zieger V; Frejek D; Zimmermann S; Miotto GAA; Koltay P; Zengerle R; Kartmann S
    Adv Healthc Mater; 2024 Apr; 13(9):e2303350. PubMed ID: 38265410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lung on a Chip for Drug Screening and Design.
    Kızılkurtlu AA; Polat T; Aydın GB; Akpek A
    Curr Pharm Des; 2018; 24(45):5386-5396. PubMed ID: 30734673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and prototyping of a chip-based multi-micro-organoid culture system for substance testing, predictive to human (substance) exposure.
    Sonntag F; Schilling N; Mader K; Gruchow M; Klotzbach U; Lindner G; Horland R; Wagner I; Lauster R; Howitz S; Hoffmann S; Marx U
    J Biotechnol; 2010 Jul; 148(1):70-5. PubMed ID: 20138930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organoid technology in female reproductive biomedicine.
    Heidari-Khoei H; Esfandiari F; Hajari MA; Ghorbaninejad Z; Piryaei A; Baharvand H
    Reprod Biol Endocrinol; 2020 Jun; 18(1):64. PubMed ID: 32552764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.