BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 36418937)

  • 21. An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records.
    Li L; Zhao J; Hou L; Zhai Y; Shi J; Cui F
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):235. PubMed ID: 31801540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomedical named entity recognition based on multi-cross attention feature fusion.
    Zheng D; Han R; Yu F; Li Y
    PLoS One; 2024; 19(5):e0304329. PubMed ID: 38805478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomedical named entity recognition based on fusion multi-features embedding.
    Li M; Yang H; Liu Y
    Technol Health Care; 2023; 31(S1):111-121. PubMed ID: 37038786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chinese clinical named entity recognition with radical-level feature and self-attention mechanism.
    Yin M; Mou C; Xiong K; Ren J
    J Biomed Inform; 2019 Oct; 98():103289. PubMed ID: 31541715
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leveraging Multi-source knowledge for Chinese clinical named entity recognition via relational graph convolutional network.
    Xiong Y; Peng H; Xiang Y; Wong KC; Chen Q; Yan J; Tang B
    J Biomed Inform; 2022 Apr; 128():104035. PubMed ID: 35217186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep learning methods for biomedical named entity recognition: a survey and qualitative comparison.
    Song B; Li F; Liu Y; Zeng X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34308472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transferring From Textual Entailment to Biomedical Named Entity Recognition.
    Liang T; Xia C; Zhao Z; Jiang Y; Yin Y; Yu PS
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(4):2577-2586. PubMed ID: 37018664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A BIGRU-Based Stacked Attention Network for Biomedical Named Entity Recognition with Chinese EMRs.
    Chen JQ; Zhu ZC; Zhang F; Zeng K; Jiang HZ; Cheng ZN
    Stud Health Technol Inform; 2023 Nov; 308():757-767. PubMed ID: 38007808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CollaboNet: collaboration of deep neural networks for biomedical named entity recognition.
    Yoon W; So CH; Lee J; Kang J
    BMC Bioinformatics; 2019 May; 20(Suppl 10):249. PubMed ID: 31138109
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multitask learning for biomedical named entity recognition with cross-sharing structure.
    Wang X; Lyu J; Dong L; Xu K
    BMC Bioinformatics; 2019 Aug; 20(1):427. PubMed ID: 31419937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AIONER: all-in-one scheme-based biomedical named entity recognition using deep learning.
    Luo L; Wei CH; Lai PT; Leaman R; Chen Q; Lu Z
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37171899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Graph Convolutional Network-Based Method for Chemical-Protein Interaction Extraction: Algorithm Development.
    Wang E; Wang F; Yang Z; Wang L; Zhang Y; Lin H; Wang J
    JMIR Med Inform; 2020 May; 8(5):e17643. PubMed ID: 32348257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MMBERT: a unified framework for biomedical named entity recognition.
    Fu L; Weng Z; Zhang J; Xie H; Cao Y
    Med Biol Eng Comput; 2024 Jan; 62(1):327-341. PubMed ID: 37833517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Document-Level Biomedical Relation Extraction Using Graph Convolutional Network and Multihead Attention: Algorithm Development and Validation.
    Wang J; Chen X; Zhang Y; Zhang Y; Wen J; Lin H; Yang Z; Wang X
    JMIR Med Inform; 2020 Jul; 8(7):e17638. PubMed ID: 32459636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparing general and specialized word embeddings for biomedical named entity recognition.
    Ramos-Vargas RE; Román-Godínez I; Torres-Ramos S
    PeerJ Comput Sci; 2021; 7():e384. PubMed ID: 33817030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep learning joint models for extracting entities and relations in biomedical: a survey and comparison.
    Su Y; Wang M; Wang P; Zheng C; Liu Y; Zeng X
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36125190
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
    Lee J; Yoon W; Kim S; Kim D; Kim S; So CH; Kang J
    Bioinformatics; 2020 Feb; 36(4):1234-1240. PubMed ID: 31501885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enriching contextualized language model from knowledge graph for biomedical information extraction.
    Fei H; Ren Y; Zhang Y; Ji D; Liang X
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32591802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integrating Language Model and Reading Control Gate in BLSTM-CRF for Biomedical Named Entity Recognition.
    Li L; Jiang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):841-846. PubMed ID: 30183643
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combinatorial feature embedding based on CNN and LSTM for biomedical named entity recognition.
    Cho M; Ha J; Park C; Park S
    J Biomed Inform; 2020 Mar; 103():103381. PubMed ID: 32004641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.