BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 36418937)

  • 41. Extraction of knowledge graph of Covid-19 through mining of unstructured biomedical corpora.
    Gajendran S; Manjula D; Sugumaran V; Hema R
    Comput Biol Chem; 2023 Feb; 102():107808. PubMed ID: 36621289
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Path-based knowledge reasoning with textual semantic information for medical knowledge graph completion.
    Lan Y; He S; Liu K; Zeng X; Liu S; Zhao J
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 9):335. PubMed ID: 34844576
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Linking entities through an ontology using word embeddings and syntactic re-ranking.
    Karadeniz İ; Özgür A
    BMC Bioinformatics; 2019 Mar; 20(1):156. PubMed ID: 30917789
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Named Entity Recognition of Medical Text Based on the Deep Neural Network.
    Yang T; He Y; Yang N
    J Healthc Eng; 2022; 2022():3990563. PubMed ID: 35295179
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biomedical named entity recognition and linking datasets: survey and our recent development.
    Huang MS; Lai PT; Lin PY; You YT; Tsai RT; Hsu WL
    Brief Bioinform; 2020 Dec; 21(6):2219-2238. PubMed ID: 32602538
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Extraction of semantic biomedical relations from text using conditional random fields.
    Bundschus M; Dejori M; Stetter M; Tresp V; Kriegel HP
    BMC Bioinformatics; 2008 Apr; 9():207. PubMed ID: 18433469
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chinese Clinical Named Entity Recognition From Electronic Medical Records Based on Multisemantic Features by Using Robustly Optimized Bidirectional Encoder Representation From Transformers Pretraining Approach Whole Word Masking and Convolutional Neural Networks: Model Development and Validation.
    Wang W; Li X; Ren H; Gao D; Fang A
    JMIR Med Inform; 2023 May; 11():e44597. PubMed ID: 37163343
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multi-granularity heterogeneous graph attention networks for extractive document summarization.
    Zhao Y; Wang L; Wang C; Du H; Wei S; Feng H; Yu Z; Li Q
    Neural Netw; 2022 Nov; 155():340-347. PubMed ID: 36113341
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Extracting drug-drug interactions from texts with BioBERT and multiple entity-aware attentions.
    Zhu Y; Li L; Lu H; Zhou A; Qin X
    J Biomed Inform; 2020 Jun; 106():103451. PubMed ID: 32454243
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Long short-term memory RNN for biomedical named entity recognition.
    Lyu C; Chen B; Ren Y; Ji D
    BMC Bioinformatics; 2017 Oct; 18(1):462. PubMed ID: 29084508
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multi-Level Representation Learning for Chinese Medical Entity Recognition: Model Development and Validation.
    Zhang Z; Zhu L; Yu P
    JMIR Med Inform; 2020 May; 8(5):e17637. PubMed ID: 32364514
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Knowledge Guided Attention and Graph Convolutional Networks for Chemical-Disease Relation Extraction.
    Sun Y; Wang J; Lin H; Zhang Y; Yang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):489-499. PubMed ID: 34962873
    [TBL] [Abstract][Full Text] [Related]  

  • 53. GRAM-CNN: a deep learning approach with local context for named entity recognition in biomedical text.
    Zhu Q; Li X; Conesa A; Pereira C
    Bioinformatics; 2018 May; 34(9):1547-1554. PubMed ID: 29272325
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improving the recall of biomedical named entity recognition with label re-correction and knowledge distillation.
    Zhou H; Liu Z; Lang C; Xu Y; Lin Y; Hou J
    BMC Bioinformatics; 2021 Jun; 22(1):295. PubMed ID: 34078270
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Online biomedical named entities recognition by data and knowledge-driven model.
    Cao L; Wu C; Luo G; Guo C; Zheng A
    Artif Intell Med; 2024 Apr; 150():102813. PubMed ID: 38553155
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving deep learning method for biomedical named entity recognition by using entity definition information.
    Xiong Y; Chen S; Tang B; Chen Q; Wang X; Yan J; Zhou Y
    BMC Bioinformatics; 2021 Dec; 22(Suppl 1):600. PubMed ID: 34920699
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Leveraging syntactic and semantic graph kernels to extract pharmacokinetic drug drug interactions from biomedical literature.
    Zhang Y; Wu HY; Xu J; Wang J; Soysal E; Li L; Xu H
    BMC Syst Biol; 2016 Aug; 10 Suppl 3(Suppl 3):67. PubMed ID: 27585838
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A hybrid deep learning framework for bacterial named entity recognition with domain features.
    Li X; Fu C; Zhong R; Zhong D; He T; Jiang X
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):583. PubMed ID: 31787075
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analyzing transfer learning impact in biomedical cross-lingual named entity recognition and normalization.
    Rivera-Zavala RM; Martínez P
    BMC Bioinformatics; 2021 Dec; 22(Suppl 1):601. PubMed ID: 34920703
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Relative Weighting of Semantic and Syntactic Cues in Native and Non-Native Listeners' Recognition of English Sentences.
    Shi LF; Koenig LL
    Ear Hear; 2016; 37(4):424-33. PubMed ID: 26783854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.