BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

586 related articles for article (PubMed ID: 36419034)

  • 1. Machine learning for data integration in human gut microbiome.
    Li P; Luo H; Ji B; Nielsen J
    Microb Cell Fact; 2022 Nov; 21(1):241. PubMed ID: 36419034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gut Microbes Meet Machine Learning: The Next Step towards Advancing Our Understanding of the Gut Microbiome in Health and Disease.
    Giuffrè M; Moretti R; Tiribelli C
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-omics approaches to studying gastrointestinal microbiome in the context of precision medicine and machine learning.
    Wu J; Singleton SS; Bhuiyan U; Krammer L; Mazumder R
    Front Mol Biosci; 2023; 10():1337373. PubMed ID: 38313584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Omics in gut microbiome analysis.
    Whon TW; Shin NR; Kim JY; Roh SW
    J Microbiol; 2021 Mar; 59(3):292-297. PubMed ID: 33624266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The human gut microbiome and its dysfunctions through the meta-omics prism.
    Mondot S; Lepage P
    Ann N Y Acad Sci; 2016 May; 1372(1):9-19. PubMed ID: 26945826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding gut microbiome-based machine learning platforms: A review on therapeutic approaches using deep learning.
    Malakar S; Sutaoney P; Madhyastha H; Shah K; Chauhan NS; Banerjee P
    Chem Biol Drug Des; 2024 Mar; 103(3):e14505. PubMed ID: 38491814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gut microbiome-mediated epigenetic regulation of brain disorder and application of machine learning for multi-omics data analysis.
    Kaur H; Singh Y; Singh S; Singh RB
    Genome; 2021 Apr; 64(4):355-371. PubMed ID: 33031715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A meta-analysis study of the robustness and universality of gut microbiome-metabolome associations.
    Muller E; Algavi YM; Borenstein E
    Microbiome; 2021 Oct; 9(1):203. PubMed ID: 34641974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of metagenomics in the human gut microbiome.
    Wang WL; Xu SY; Ren ZG; Tao L; Jiang JW; Zheng SS
    World J Gastroenterol; 2015 Jan; 21(3):803-14. PubMed ID: 25624713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alzheimer's Disease Microbiome Is Associated with Dysregulation of the Anti-Inflammatory P-Glycoprotein Pathway.
    Haran JP; Bhattarai SK; Foley SE; Dutta P; Ward DV; Bucci V; McCormick BA
    mBio; 2019 May; 10(3):. PubMed ID: 31064831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Genome-Scale Metabolic Modeling toward Microbial Community Analysis of the Human Microbiome.
    Esvap E; Ulgen KO
    ACS Synth Biol; 2021 Sep; 10(9):2121-2137. PubMed ID: 34402617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancing functional and translational microbiome research using meta-omics approaches.
    Zhang X; Li L; Butcher J; Stintzi A; Figeys D
    Microbiome; 2019 Dec; 7(1):154. PubMed ID: 31810497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gut microbiota signatures in cystic fibrosis: Loss of host CFTR function drives the microbiota enterophenotype.
    Vernocchi P; Del Chierico F; Russo A; Majo F; Rossitto M; Valerio M; Casadei L; La Storia A; De Filippis F; Rizzo C; Manetti C; Paci P; Ercolini D; Marini F; Fiscarelli EV; Dallapiccola B; Lucidi V; Miccheli A; Putignani L
    PLoS One; 2018; 13(12):e0208171. PubMed ID: 30521551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-omics insights into the interplay between gut microbiota and colorectal cancer in the "microworld" age.
    Wang AJ; Song D; Hong YM; Liu NN
    Mol Omics; 2023 May; 19(4):283-296. PubMed ID: 36916422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the complex role of gut microbiome in the development of precision medicine strategies for targeting microbial imbalance-induced colon cancer.
    Pal P; Shastry RP
    Folia Microbiol (Praha); 2023 Oct; 68(5):691-701. PubMed ID: 37624549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. It takes guts to learn: machine learning techniques for disease detection from the gut microbiome.
    Curry KD; Nute MG; Treangen TJ
    Emerg Top Life Sci; 2021 Dec; 5(6):815-827. PubMed ID: 34779841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systems to model the personalized aspects of microbiome health and gut dysbiosis.
    Matthewman C; Narin A; Huston H; Hopkins CE
    Mol Aspects Med; 2023 Jun; 91():101115. PubMed ID: 36104261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjusting for age improves identification of gut microbiome alterations in multiple diseases.
    Ghosh TS; Das M; Jeffery IB; O'Toole PW
    Elife; 2020 Mar; 9():. PubMed ID: 32159510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning on the road to unlocking microbiota's potential for boosting immune checkpoint therapy.
    Wojciechowski S; Majchrzak-Górecka M; Biernat P; Odrzywołek K; Pruss Ł; Zych K; Jan Majta ; Milanowska-Zabel K
    Int J Med Microbiol; 2022 Oct; 312(7):151560. PubMed ID: 36113358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human gut microbiome aging clocks based on taxonomic and functional signatures through multi-view learning.
    Chen Y; Wang H; Lu W; Wu T; Yuan W; Zhu J; Lee YK; Zhao J; Zhang H; Chen W
    Gut Microbes; 2022; 14(1):2025016. PubMed ID: 35040752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.