BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36419102)

  • 1. Optimization of L-malic acid production from acetate with Aspergillus oryzae DSM 1863 using a pH-coupled feeding strategy.
    Kövilein A; Aschmann V; Zadravec L; Ochsenreither K
    Microb Cell Fact; 2022 Nov; 21(1):242. PubMed ID: 36419102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetate as substrate for L-malic acid production with Aspergillus oryzae DSM 1863.
    Kövilein A; Umpfenbach J; Ochsenreither K
    Biotechnol Biofuels; 2021 Feb; 14(1):48. PubMed ID: 33622386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of process mode, nitrogen source and temperature on L-malic acid production with
    Kövilein A; Zadravec L; Hohmann S; Umpfenbach J; Ochsenreither K
    Front Bioeng Biotechnol; 2022; 10():1033777. PubMed ID: 36312560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced l-Malic Acid Production by
    Schmitt V; Derenbach L; Ochsenreither K
    Front Bioeng Biotechnol; 2021; 9():760500. PubMed ID: 35083199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable carbon sources for microbial organic acid production with filamentous fungi.
    Dörsam S; Fesseler J; Gorte O; Hahn T; Zibek S; Syldatk C; Ochsenreither K
    Biotechnol Biofuels; 2017; 10():242. PubMed ID: 29075326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Process characterization and influence of alternative carbon sources and carbon-to-nitrogen ratio on organic acid production by Aspergillus oryzae DSM1863.
    Ochsenreither K; Fischer C; Neumann A; Syldatk C
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5449-60. PubMed ID: 24604500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential Mixed Cultures: From Syngas to Malic Acid.
    Oswald F; Dörsam S; Veith N; Zwick M; Neumann A; Ochsenreither K; Syldatk C
    Front Microbiol; 2016; 7():891. PubMed ID: 27445993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68.
    Knuf C; Nookaew I; Remmers I; Khoomrung S; Brown S; Berry A; Nielsen J
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3517-27. PubMed ID: 24413918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Key process conditions for production of C(4) dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain.
    Zelle RM; de Hulster E; Kloezen W; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2010 Feb; 76(3):744-50. PubMed ID: 20008165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing L-malate production of Aspergillus oryzae FMME218-37 by improving inorganic nitrogen utilization.
    Ding Q; Luo Q; Zhou J; Chen X; Liu L
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8739-8751. PubMed ID: 30109399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing L-malate production of Aspergillus oryzae by nitrogen regulation strategy.
    Ji L; Wang J; Luo Q; Ding Q; Tang W; Chen X; Liu L
    Appl Microbiol Biotechnol; 2021 Apr; 105(8):3101-3113. PubMed ID: 33818672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid.
    Brown SH; Bashkirova L; Berka R; Chandler T; Doty T; McCall K; McCulloch M; McFarland S; Thompson S; Yaver D; Berry A
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8903-12. PubMed ID: 23925533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Aspergillus oryzae for efficient production of l-malate directly from corn starch.
    Liu J; Li J; Shin HD; Du G; Chen J; Liu L
    J Biotechnol; 2017 Nov; 262():40-46. PubMed ID: 28965975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Engineering of
    Chen Y; Han A; Wang M; Wei D; Wang W
    J Agric Food Chem; 2023 Mar; 71(9):4043-4050. PubMed ID: 36812909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Rewiring of Carbon Metabolism and Redox Metabolism in Cytoplasm and Mitochondria of Aspergillus oryzae for Increased l-Malate Production.
    Liu J; Li J; Liu Y; Shin HD; Ledesma-Amaro R; Du G; Chen J; Liu L
    ACS Synth Biol; 2018 Sep; 7(9):2139-2147. PubMed ID: 30092627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rewiring the reductive tricarboxylic acid pathway and L-malate transport pathway of Aspergillus oryzae for overproduction of L-malate.
    Liu J; Xie Z; Shin HD; Li J; Du G; Chen J; Liu L
    J Biotechnol; 2017 Jul; 253():1-9. PubMed ID: 28506930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions.
    Knuf C; Nookaew I; Brown SH; McCulloch M; Berry A; Nielsen J
    Appl Environ Microbiol; 2013 Oct; 79(19):6050-8. PubMed ID: 23892740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cultivation of edible filamentous fungus Aspergillus oryzae on volatile fatty acids derived from anaerobic digestion of food waste and cow manure.
    Uwineza C; Mahboubi A; Atmowidjojo A; Ramadhani A; Wainaina S; Millati R; Wikandari R; Niklasson C; Taherzadeh MJ
    Bioresour Technol; 2021 Oct; 337():125410. PubMed ID: 34157433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis.
    Zou X; Zhou Y; Yang ST
    Biotechnol Bioeng; 2013 Aug; 110(8):2105-13. PubMed ID: 23436475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detoxification of a pyrolytic aqueous condensate from wheat straw for utilization as substrate in Aspergillus oryzae DSM 1863 cultivations.
    Kubisch C; Ochsenreither K
    Biotechnol Biofuels Bioprod; 2022 Feb; 15(1):18. PubMed ID: 35418301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.