BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36419102)

  • 21. Optimization and scale-up of α-amylase production by Aspergillus oryzae using solid-state fermentation of edible oil cakes.
    Balakrishnan M; Jeevarathinam G; Kumar SKS; Muniraj I; Uthandi S
    BMC Biotechnol; 2021 May; 21(1):33. PubMed ID: 33947396
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphology engineering of Aspergillus oryzae for l-malate production.
    Chen X; Zhou J; Ding Q; Luo Q; Liu L
    Biotechnol Bioeng; 2019 Oct; 116(10):2662-2673. PubMed ID: 31180134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced malic acid production using Aspergillus niger coupled with in situ product recovery.
    Iyyappan J; Baskar G; Bharathiraja B; Gopinath M
    Bioresour Technol; 2020 Jul; 308():123259. PubMed ID: 32273160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering rTCA pathway and C4-dicarboxylate transporter for L-malic acid production.
    Chen X; Wang Y; Dong X; Hu G; Liu L
    Appl Microbiol Biotechnol; 2017 May; 101(10):4041-4052. PubMed ID: 28229207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. L-malic acid production from xylose by engineered Saccharomyces cerevisiae.
    Kang NK; Lee JW; Ort DR; Jin YS
    Biotechnol J; 2022 Mar; 17(3):e2000431. PubMed ID: 34390209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent advances in the production of malic acid by native fungi and engineered microbes.
    Khandelwal R; Srivastava P; Bisaria VS
    World J Microbiol Biotechnol; 2023 Jun; 39(8):217. PubMed ID: 37269376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced malic acid production from glycerol with high-cell density Ustilago trichophora TZ1 cultivations.
    Zambanini T; Kleineberg W; Sarikaya E; Buescher JM; Meurer G; Wierckx N; Blank LM
    Biotechnol Biofuels; 2016; 9():135. PubMed ID: 27375775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Aspergillus oryzae fermentation extract on in vitro equine cecal fermentation.
    McDaniel AL; Martin SA; McCann JS; Parks AH
    J Anim Sci; 1993 Aug; 71(8):2164-72. PubMed ID: 8376241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced lipid production by addition of malic acid in fermentation of recombinant Mucor circinelloides Mc-MT-2.
    Zhang Y; Liu Q; Li P; Wang Y; Li S; Gao M; Song Y
    Sci Rep; 2021 Jun; 11(1):12674. PubMed ID: 34135458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fumarate production with
    Swart RM; le Roux F; Naude A; de Jongh NW; Nicol W
    Biotechnol Biofuels; 2020; 13():22. PubMed ID: 32021653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Malic acid production from biodiesel derived crude glycerol using morphologically controlled Aspergillus niger in batch fermentation.
    Iyyappan J; Baskar G; Bharathiraja B; Saravanathamizhan R
    Bioresour Technol; 2018 Dec; 269():393-399. PubMed ID: 30205264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimized Bioproduction of Itaconic and Fumaric Acids Based on Solid-State Fermentation of Lignocellulosic Biomass.
    Jiménez-Quero A; Pollet E; Avérous L; Phalip V
    Molecules; 2020 Feb; 25(5):. PubMed ID: 32121002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering of the acid-tolerant yeast Pichia kudriavzevii for efficient L-malic acid production at low pH.
    Xi Y; Xu H; Zhan T; Qin Y; Fan F; Zhang X
    Metab Eng; 2023 Jan; 75():170-180. PubMed ID: 36566973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of Pyrolysis Oil as Carbon Source for Fungal Fermentation.
    Dörsam S; Kirchhoff J; Bigalke M; Dahmen N; Syldatk C; Ochsenreither K
    Front Microbiol; 2016; 7():2059. PubMed ID: 28066378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Final report on the safety assessment of Malic Acid and Sodium Malate.
    Fiume Z
    Int J Toxicol; 2001; 20 Suppl 1():47-55. PubMed ID: 11358110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of pH, malic acid and glucose concentrations on malic acid consumption by Saccharomyces cerevisiae.
    Delcourt F; Taillandier P; Vidal F; Strehaiano P
    Appl Microbiol Biotechnol; 1995; 43(2):321-4. PubMed ID: 7612251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor.
    Battat E; Peleg Y; Bercovitz A; Rokem JS; Goldberg I
    Biotechnol Bioeng; 1991 May; 37(11):1108-16. PubMed ID: 18597343
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic engineering of Aspergillus niger for accelerated malic acid biosynthesis by improving NADPH availability.
    Wu N; Wu X; Zhang M; Zhang C; Xu Q
    Biotechnol J; 2024 May; 19(5):e2400014. PubMed ID: 38719614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acetate-based production of itaconic acid with Corynebacterium glutamicum using an integrated pH-coupled feeding control.
    Merkel M; Kiefer D; Schmollack M; Blombach B; Lilge L; Henkel M; Hausmann R
    Bioresour Technol; 2022 May; 351():126994. PubMed ID: 35288270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Agmatine Production by Aspergillus oryzae Is Elevated by Low pH during Solid-State Cultivation.
    Akasaka N; Kato S; Kato S; Hidese R; Wagu Y; Sakoda H; Fujiwara S
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.