BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36419182)

  • 1. Selective sweeps linked to the colonization of novel habitats and climatic changes in a wild tomato species.
    Wei K; Silva-Arias GA; Tellier A
    New Phytol; 2023 Mar; 237(5):1908-1921. PubMed ID: 36419182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. North-South Colonization Associated with Local Adaptation of the Wild Tomato Species Solanum chilense.
    Böndel KB; Lainer H; Nosenko T; Mboup M; Tellier A; Stephan W
    Mol Biol Evol; 2015 Nov; 32(11):2932-43. PubMed ID: 26232423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subsets of NLR genes show differential signatures of adaptation during colonization of new habitats.
    Stam R; Silva-Arias GA; Tellier A
    New Phytol; 2019 Oct; 224(1):367-379. PubMed ID: 31230368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation to low temperatures in the wild tomato species Solanum chilense.
    Nosenko T; Böndel KB; Kumpfmüller G; Stephan W
    Mol Ecol; 2016 Jun; 25(12):2853-69. PubMed ID: 27037798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide diversity patterns of local adaptation at drought-related candidate genes in wild tomatoes.
    Xia H; Camus-Kulandaivelu L; Stephan W; Tellier A; Zhang Z
    Mol Ecol; 2010 Oct; 19(19):4144-54. PubMed ID: 20831645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trans-species polymorphism and allele-specific expression in the CBF gene family of wild tomatoes.
    Mboup M; Fischer I; Lainer H; Stephan W
    Mol Biol Evol; 2012 Dec; 29(12):3641-52. PubMed ID: 22787283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial genetics of wild tomato species reveals roles of the Andean geography on demographic history.
    Nakazato T; Housworth EA
    Am J Bot; 2011 Jan; 98(1):88-98. PubMed ID: 21613087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation to drought in two wild tomato species: the evolution of the Asr gene family.
    Fischer I; Camus-Kulandaivelu L; Allal F; Stephan W
    New Phytol; 2011 Jun; 190(4):1032-1044. PubMed ID: 21323928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The
    Stam R; Nosenko T; Hörger AC; Stephan W; Seidel M; Kuhn JMM; Haberer G; Tellier A
    G3 (Bethesda); 2019 Dec; 9(12):3933-3941. PubMed ID: 31604826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide polymorphism in the drought responsive gene Asr2 in wild populations of tomato.
    Giombini MI; Frankel N; Iusem ND; Hasson E
    Genetica; 2009 May; 136(1):13-25. PubMed ID: 18636230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence evolution and expression regulation of stress-responsive genes in natural populations of wild tomato.
    Fischer I; Steige KA; Stephan W; Mboup M
    PLoS One; 2013; 8(10):e78182. PubMed ID: 24205149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genome-wide scan shows evidence for local adaptation in a widespread keystone Neotropical forest tree.
    Collevatti RG; Novaes E; Silva-Junior OB; Vieira LD; Lima-Ribeiro MS; Grattapaglia D
    Heredity (Edinb); 2019 Aug; 123(2):117-137. PubMed ID: 30755734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps.
    Garud NR; Messer PW; Buzbas EO; Petrov DA
    PLoS Genet; 2015 Feb; 11(2):e1005004. PubMed ID: 25706129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft Sweeps Are the Dominant Mode of Adaptation in the Human Genome.
    Schrider DR; Kern AD
    Mol Biol Evol; 2017 Aug; 34(8):1863-1877. PubMed ID: 28482049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local selection signals in the genome of blue tits emphasize regulatory and neuronal evolution.
    Mueller JC; Botero-Delgadillo E; Espíndola-Hernández P; Gilsenan C; Ewels P; Gruselius J; Kempenaers B
    Mol Ecol; 2022 Mar; 31(5):1504-1514. PubMed ID: 34995389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using multilocus sequence data to assess population structure, natural selection, and linkage disequilibrium in wild tomatoes.
    Arunyawat U; Stephan W; Städler T
    Mol Biol Evol; 2007 Oct; 24(10):2310-22. PubMed ID: 17675653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genomic footprint of climate adaptation in Chironomus riparius.
    Waldvogel AM; Wieser A; Schell T; Patel S; Schmidt H; Hankeln T; Feldmeyer B; Pfenninger M
    Mol Ecol; 2018 Mar; 27(6):1439-1456. PubMed ID: 29473242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signatures of local adaptation in lowland and highland teosintes from whole-genome sequencing of pooled samples.
    Fustier MA; Brandenburg JT; Boitard S; Lapeyronnie J; Eguiarte LE; Vigouroux Y; Manicacci D; Tenaillon MI
    Mol Ecol; 2017 May; 26(10):2738-2756. PubMed ID: 28256021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation in structured populations and fuzzy boundaries between hard and soft sweeps.
    Zheng Y; Wiehe T
    PLoS Comput Biol; 2019 Nov; 15(11):e1007426. PubMed ID: 31710623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inference of seed bank parameters in two wild tomato species using ecological and genetic data.
    Tellier A; Laurent SJ; Lainer H; Pavlidis P; Stephan W
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):17052-7. PubMed ID: 21949404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.