BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36419505)

  • 1. Auxiliary Segmentation Method of Osteosarcoma MRI Image Based on Transformer and U-Net.
    Liu F; Zhu J; Lv B; Yang L; Sun W; Dai Z; Gou F; Wu J
    Comput Intell Neurosci; 2022; 2022():9990092. PubMed ID: 36419505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intelligent Segmentation Medical Assistance System for MRI Images of Osteosarcoma in Developing Countries.
    Wu J; Yang S; Gou F; Zhou Z; Xie P; Xu N; Dai Z
    Comput Math Methods Med; 2022; 2022():7703583. PubMed ID: 35096135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rethinking U-Net from an Attention Perspective with Transformers for Osteosarcoma MRI Image Segmentation.
    Ouyang T; Yang S; Gou F; Dai Z; Wu J
    Comput Intell Neurosci; 2022; 2022():7973404. PubMed ID: 35707196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BA-GCA Net: Boundary-Aware Grid Contextual Attention Net in Osteosarcoma MRI Image Segmentation.
    Wu J; Liu Z; Gou F; Zhu J; Tang H; Zhou X; Xiong W
    Comput Intell Neurosci; 2022; 2022():3881833. PubMed ID: 35942441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Artificial Intelligence Multiprocessing Scheme for the Diagnosis of Osteosarcoma MRI Images.
    Wu J; Xiao P; Huang H; Gou F; Zhou Z; Dai Z
    IEEE J Biomed Health Inform; 2022 Sep; 26(9):4656-4667. PubMed ID: 35727772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intelligent Assistant Diagnosis System of Osteosarcoma MRI Image Based on Transformer and Convolution in Developing Countries.
    Ling Z; Yang S; Gou F; Dai Z; Wu J
    IEEE J Biomed Health Inform; 2022 Nov; 26(11):5563-5574. PubMed ID: 35921344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Intelligence-Aided Diagnosis Solution by Enhancing the Edge Features of Medical Images.
    Lv B; Liu F; Li Y; Nie J; Gou F; Wu J
    Diagnostics (Basel); 2023 Mar; 13(6):. PubMed ID: 36980371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auxiliary Segmentation Method of Osteosarcoma in MRI Images Based on Denoising and Local Enhancement.
    Wang L; Yu L; Zhu J; Tang H; Gou F; Wu J
    Healthcare (Basel); 2022 Aug; 10(8):. PubMed ID: 36011123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Medically Assisted Model for Precise Segmentation of Osteosarcoma Nuclei on Pathological Images.
    Wu J; Yuan T; Zeng J; Gou F
    IEEE J Biomed Health Inform; 2023 Aug; 27(8):3982-3993. PubMed ID: 37216252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-supervised tumor segmentation and prognosis prediction in osteosarcoma using multiparametric MRI and clinical characteristics.
    Zhou Z; Xie P; Dai Z; Wu J
    Comput Methods Programs Biomed; 2024 Feb; 244():107974. PubMed ID: 38154327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images.
    Huang L; Xia W; Zhang B; Qiu B; Gao X
    Comput Methods Programs Biomed; 2017 May; 143():67-74. PubMed ID: 28391820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A segmentation of brain MRI images utilizing intensity and contextual information by Markov random field.
    Chen M; Yan Q; Qin M
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):200-211. PubMed ID: 29072503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
    Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A
    Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple supervised residual network for osteosarcoma segmentation in CT images.
    Zhang R; Huang L; Xia W; Zhang B; Qiu B; Gao X
    Comput Med Imaging Graph; 2018 Jan; 63():1-8. PubMed ID: 29361340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based medical image segmentation of the aorta using XR-MSF-U-Net.
    Chen W; Huang H; Huang J; Wang K; Qin H; Wong KKL
    Comput Methods Programs Biomed; 2022 Oct; 225():107073. PubMed ID: 36029551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiple-channel and atrous convolution network for ultrasound image segmentation.
    Zhang L; Zhang J; Li Z; Song Y
    Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collaborative multi-feature extraction and scale-aware semantic information mining for medical image segmentation.
    Zhang R; He Z; Zhu J; Yuan X; Huang G; Pun CM; Peng J; Lin J; Zhou J
    Phys Med Biol; 2022 Oct; 67(20):. PubMed ID: 36170875
    [No Abstract]   [Full Text] [Related]  

  • 19. Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
    Xiao Z; Su Y; Deng Z; Zhang W
    Comput Methods Programs Biomed; 2022 Nov; 226():107099. PubMed ID: 36116398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated prediction of the neoadjuvant chemotherapy response in osteosarcoma with deep learning and an MRI-based radiomics nomogram.
    Zhong J; Zhang C; Hu Y; Zhang J; Liu Y; Si L; Xing Y; Ding D; Geng J; Jiao Q; Zhang H; Yang G; Yao W
    Eur Radiol; 2022 Sep; 32(9):6196-6206. PubMed ID: 35364712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.