These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36419645)

  • 1. Bio-inspired design of a self-aligning, lightweight, and highly-compliant cable-driven knee exoskeleton.
    Yu S; Huang TH; Di Lallo A; Zhang S; Wang T; Fu Q; Su H
    Front Hum Neurosci; 2022; 16():1018160. PubMed ID: 36419645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-Direct Drive Actuation for a Lightweight Hip Exoskeleton with High Backdrivability and High Bandwidth.
    Yu S; Huang TH; Yang X; Jiao C; Yang J; Chen Y; Yi J; Su H
    IEEE ASME Trans Mechatron; 2020; 25(4):1794-1802. PubMed ID: 33746504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and Stiffness-based Continuous Torque Control of Lightweight Quasi-Direct-Drive Knee Exoskeletons for Versatile Walking Assistance.
    Huang TH; Zhang S; Yu S; MacLean MK; Zhu J; Lallo AD; Jiao C; Bulea TC; Zheng M; Su H
    IEEE Trans Robot; 2022 Jun; 38(3):1442-1459. PubMed ID: 36338603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a lightweight, tethered, torque-controlled knee exoskeleton.
    Witte KA; Fatschel AM; Collins SH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1646-1653. PubMed ID: 28814056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Aligning Mechanism Improves Comfort and Performance With a Powered Knee Exoskeleton.
    Sarkisian SV; Ishmael MK; Lenzi T
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():629-640. PubMed ID: 33684041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Elbow Exoskeleton for Upper Limb Rehabilitation with Series Elastic Actuator and Cable-driven Differential.
    Chen T; Casas R; Lum PS
    IEEE Trans Robot; 2019 Dec; 35(6):1464-1474. PubMed ID: 31929766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Validation of a Self-Aligning Knee Exoskeleton With Hip Rotation Capability.
    Li G; Liang X; Lu H; Su T; Hou ZG
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():472-481. PubMed ID: 38227411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knee Compliance Reduces Peak Swing Phase Collision Forces in a Lower-Limb Exoskeleton Leg: A Test Bench Evaluation.
    Schrade SO; Menner M; Shirota C; Winiger P; Stutz A; Zeilinger MN; Lambercy O; Gassert R
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):535-544. PubMed ID: 32746051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking control of time-varying knee exoskeleton disturbed by interaction torque.
    Li Z; Ma W; Yin Z; Guo H
    ISA Trans; 2017 Nov; 71(Pt 2):458-466. PubMed ID: 28823408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating Multiarticular Energy during Human Walking and Running with an Unpowered Exoskeleton.
    Zhou T; Zhou Z; Zhang H; Chen W
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Series-elastic actuator with two degree-of-freedom PID control improves torque control in a powered knee exoskeleton.
    Sarkisian SV; Gabert L; Lenzi T
    Wearable Technol; 2023; 4():e25. PubMed ID: 38510590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary Assessment of a Compliant Gait Exoskeleton.
    Cestari M; Sanz-Merodio D; Garcia E
    Soft Robot; 2017 Jun; 4(2):135-146. PubMed ID: 29182092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Backdrivability Modeling of a Portable High Torque Robotic Knee Prosthesis With Intrinsic Compliance For Agile Activities.
    Zhu J; Jiao C; Dominguez I; Yu S; Su H
    IEEE ASME Trans Mechatron; 2022 Aug; 27(4):1837-1845. PubMed ID: 36909775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Multi-Joint Passive Exoskeleton for Vertical Jumping Using Optimal Control.
    Ostraich B; Riemer R
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2815-2823. PubMed ID: 36155480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an unpowered ankle exoskeleton for walking assist.
    Leclair J; Pardoel S; Helal A; Doumit M
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):1-13. PubMed ID: 30132353
    [No Abstract]   [Full Text] [Related]  

  • 17. Assessing effects of exoskeleton misalignment on knee joint load during swing using an instrumented leg simulator.
    Bessler-Etten J; Schaake L; Prange-Lasonder GB; Buurke JH
    J Neuroeng Rehabil; 2022 Jan; 19(1):13. PubMed ID: 35090501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Closed-Loop Torque and Kinematic Control of a Hybrid Lower-Limb Exoskeleton for Treadmill Walking.
    Chang CH; Casas J; Brose SW; Duenas VH
    Front Robot AI; 2021; 8():702860. PubMed ID: 35127833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel swing-assist un-motorized exoskeletons for gait training.
    Mankala KK; Banala SK; Agrawal SK
    J Neuroeng Rehabil; 2009 Jul; 6():24. PubMed ID: 19575808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a Payload Adjustment Device for an Unpowered Lower-Limb Exoskeleton.
    Yun J; Kang O; Joe HM
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.