These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36419657)

  • 1. An economic analysis of scrap tire pyrolysis, potential and new opportunities.
    Goksal FP
    Heliyon; 2022 Nov; 8(11):e11669. PubMed ID: 36419657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Economic and policy instrument analyses in support of the scrap tire recycling program in Taiwan.
    Chang NB
    J Environ Manage; 2008 Feb; 86(3):435-50. PubMed ID: 17276578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waste tire pyrolysis and desulfurization of tire pyrolytic oil (TPO) - A review.
    Mello M; Rutto H; Seodigeng T
    J Air Waste Manag Assoc; 2023 Mar; 73(3):159-177. PubMed ID: 36269581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of the characteristics of carbonaceous material obtained via single-staged steam pyrolysis of waste tires.
    Larionov KB; Slyusarskiy KV; Ivanov AA; Mishakov IV; Pak AY; Jankovsky SA; Stoyanovskii VO; Vedyagin AA; Gubin VE
    J Air Waste Manag Assoc; 2022 Feb; 72(2):161-175. PubMed ID: 34846272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The fate of sulfur during rapid pyrolysis of scrap tires.
    Hu H; Fang Y; Liu H; Yu R; Luo G; Liu W; Li A; Yao H
    Chemosphere; 2014 Feb; 97():102-7. PubMed ID: 24238304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production and Upgrading of Recovered Carbon Black from the Pyrolysis of End-of-Life Tires.
    Costa SMR; Fowler D; Carreira GA; Portugal I; Silva CM
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of catalytic effect on upgrading bio-oil derived from co-pyrolysis of water hyacinth and scrap tire over multilamellar MFI nanosheets and HZSM-5.
    Chen L; Ma X; Tang F; Li Y; Yu Z; Chen X
    Bioresour Technol; 2020 Sep; 312():123592. PubMed ID: 32531734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of the secondary reactions on volatile composition during the pyrolysis treatment of scrap tires.
    Pan Y; Huang P; Xue Z; Wang X; Zhou Y; Huang Q
    Environ Technol; 2022 Nov; 43(26):4054-4065. PubMed ID: 34110273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Status of waste tires and management practice in Botswana.
    Mmereki D; Machola B; Mokokwe K
    J Air Waste Manag Assoc; 2019 Oct; 69(10):1230-1246. PubMed ID: 28278033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seismic performance of the intermediate unit of a scrap tire-granular material composite column.
    Wang F; Nie X; Wang X; Zhang J
    Environ Technol; 2024 May; 45(13):2628-2648. PubMed ID: 36772916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic pyrolysis of tire waste: Impacts of biochar catalyst on product evolution.
    Chao L; Zhang C; Zhang L; Gholizadeh M; Hu X
    Waste Manag; 2020 Oct; 116():9-21. PubMed ID: 32781409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaching of DOC, DN, and inorganic constituents from scrap tires.
    Selbes M; Yilmaz O; Khan AA; Karanfil T
    Chemosphere; 2015 Nov; 139():617-23. PubMed ID: 25712610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the pyrolysis kinetics of scrap automotive tires.
    Chen JH; Chen KS; Tong LY
    J Hazard Mater; 2001 Jun; 84(1):43-55. PubMed ID: 11376883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced zinc leaching from scrap tire during pavement applications.
    Liu X; Wang J; Gheni A; ElGawady MA
    Waste Manag; 2018 Nov; 81():53-60. PubMed ID: 30527043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical Challenges of Utilizing Ground Tire Rubber in Asphalt Pavements in the United States.
    Ghabchi R; Arshadi A; Zaman M; March F
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tire waste management system in Cyprus in the framework of circular economy strategy.
    Symeonides D; Loizia P; Zorpas AA
    Environ Sci Pollut Res Int; 2019 Dec; 26(35):35445-35460. PubMed ID: 31127515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-value utilization of waste tires: A review with focus on modified carbon black from pyrolysis.
    Xu J; Yu J; Xu J; Sun C; He W; Huang J; Li G
    Sci Total Environ; 2020 Nov; 742():140235. PubMed ID: 32629243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of end-of-life tire treatment technologies: a Chinese case study.
    Li X; Xu H; Gao Y; Tao Y
    Waste Manag; 2010 Nov; 30(11):2235-46. PubMed ID: 20615682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse logistics network design for large off-the-road scrap tires from mining sites with a single shredding resource scheduling application.
    Oyola-Cervantes J; Amaya-Mier R
    Waste Manag; 2019 Dec; 100():219-229. PubMed ID: 31546182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tire traces - discrimination and classification of pyrolysis-GC/MS profiles.
    Gueissaz L; Massonnet G
    Forensic Sci Int; 2013 Jul; 230(1-3):46-57. PubMed ID: 23121890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.