These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 36419999)
1. The effectiveness of artificial intelligence-based automated grading and training system in education of manual detection of diabetic retinopathy. Qian X; Jingying H; Xian S; Yuqing Z; Lili W; Baorui C; Wei G; Yefeng Z; Qiang Z; Chunyan C; Cheng B; Kai M; Yi Q Front Public Health; 2022; 10():1025271. PubMed ID: 36419999 [TBL] [Abstract][Full Text] [Related]
2. [Using artificial intelligence as an initial triage strategy in diabetic retinopathy screening program in China]. Li ZX; Zhang J; Fong N; He MG Zhonghua Yi Xue Za Zhi; 2020 Dec; 100(48):3835-3840. PubMed ID: 33371627 [No Abstract] [Full Text] [Related]
3. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study. Ming S; Xie K; Lei X; Yang Y; Zhao Z; Li S; Jin X; Lei B Int Ophthalmol; 2021 Apr; 41(4):1291-1299. PubMed ID: 33389425 [TBL] [Abstract][Full Text] [Related]
4. Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera. Kubin AM; Huhtinen P; Ohtonen P; Keskitalo A; Wirkkala J; Hautala N Ann Med; 2024 Dec; 56(1):2352018. PubMed ID: 38738798 [TBL] [Abstract][Full Text] [Related]
5. Diagnostic Accuracy of Automated Diabetic Retinopathy Image Assessment Softwares: IDx-DR and Medios Artificial Intelligence. Grzybowski A; Rao DP; Brona P; Negiloni K; Krzywicki T; Savoy FM Ophthalmic Res; 2023; 66(1):1286-1292. PubMed ID: 37757777 [TBL] [Abstract][Full Text] [Related]
6. Validation of Artificial Intelligence Algorithm in the Detection and Staging of Diabetic Retinopathy through Fundus Photography: An Automated Tool for Detection and Grading of Diabetic Retinopathy. Pawar B; Lobo SN; Joseph M; Jegannathan S; Jayraj H Middle East Afr J Ophthalmol; 2021; 28(2):81-86. PubMed ID: 34759664 [TBL] [Abstract][Full Text] [Related]
7. Artificial Intelligence in Community-Based Diabetic Retinopathy Telemedicine Screening in Urban China: Cost-effectiveness and Cost-Utility Analyses With Real-world Data. Lin S; Ma Y; Xu Y; Lu L; He J; Zhu J; Peng Y; Yu T; Congdon N; Zou H JMIR Public Health Surveill; 2023 Feb; 9():e41624. PubMed ID: 36821353 [TBL] [Abstract][Full Text] [Related]
8. Validation of Automated Screening for Referable Diabetic Retinopathy With an Autonomous Diagnostic Artificial Intelligence System in a Spanish Population. Shah A; Clarida W; Amelon R; Hernaez-Ortega MC; Navea A; Morales-Olivas J; Dolz-Marco R; Verbraak F; Jorda PP; van der Heijden AA; Peris Martinez C J Diabetes Sci Technol; 2021 May; 15(3):655-663. PubMed ID: 32174153 [TBL] [Abstract][Full Text] [Related]
9. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Bellemo V; Lim ZW; Lim G; Nguyen QD; Xie Y; Yip MYT; Hamzah H; Ho J; Lee XQ; Hsu W; Lee ML; Musonda L; Chandran M; Chipalo-Mutati G; Muma M; Tan GSW; Sivaprasad S; Menon G; Wong TY; Ting DSW Lancet Digit Health; 2019 May; 1(1):e35-e44. PubMed ID: 33323239 [TBL] [Abstract][Full Text] [Related]
10. Artificial intelligence-based screening for diabetic retinopathy at community hospital. He J; Cao T; Xu F; Wang S; Tao H; Wu T; Sun L; Chen J Eye (Lond); 2020 Mar; 34(3):572-576. PubMed ID: 31455902 [TBL] [Abstract][Full Text] [Related]
11. An Automated Grading System for Detection of Vision-Threatening Referable Diabetic Retinopathy on the Basis of Color Fundus Photographs. Li Z; Keel S; Liu C; He Y; Meng W; Scheetz J; Lee PY; Shaw J; Ting D; Wong TY; Taylor H; Chang R; He M Diabetes Care; 2018 Dec; 41(12):2509-2516. PubMed ID: 30275284 [TBL] [Abstract][Full Text] [Related]
12. Telemedical Diabetic Retinopathy Screening in a Primary Care Setting: Quality of Retinal Photographs and Accuracy of Automated Image Analysis. Wintergerst MWM; Bejan V; Hartmann V; Schnorrenberg M; Bleckwenn M; Weckbecker K; Finger RP Ophthalmic Epidemiol; 2022 Jun; 29(3):286-295. PubMed ID: 34151725 [TBL] [Abstract][Full Text] [Related]
13. Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients. Heydon P; Egan C; Bolter L; Chambers R; Anderson J; Aldington S; Stratton IM; Scanlon PH; Webster L; Mann S; du Chemin A; Owen CG; Tufail A; Rudnicka AR Br J Ophthalmol; 2021 May; 105(5):723-728. PubMed ID: 32606081 [TBL] [Abstract][Full Text] [Related]
14. Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading. Romero-Oraá R; Herrero-Tudela M; López MI; Hornero R; García M Comput Methods Programs Biomed; 2024 Jun; 249():108160. PubMed ID: 38583290 [TBL] [Abstract][Full Text] [Related]
15. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital. Liu R; Li Q; Xu F; Wang S; He J; Cao Y; Shi F; Chen X; Chen J Biomed Eng Online; 2022 Jul; 21(1):47. PubMed ID: 35859144 [TBL] [Abstract][Full Text] [Related]
16. Validation of Deep Convolutional Neural Network-based algorithm for detection of diabetic retinopathy - Artificial intelligence versus clinician for screening. Shah P; Mishra DK; Shanmugam MP; Doshi B; Jayaraj H; Ramanjulu R Indian J Ophthalmol; 2020 Feb; 68(2):398-405. PubMed ID: 31957737 [TBL] [Abstract][Full Text] [Related]
17. Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy. Le D; Alam M; Yao CK; Lim JI; Hsieh YT; Chan RVP; Toslak D; Yao X Transl Vis Sci Technol; 2020 Jul; 9(2):35. PubMed ID: 32855839 [TBL] [Abstract][Full Text] [Related]
18. Using artificial intelligence reading label system in diabetic retinopathy grading training of junior ophthalmology residents and medical students. Han R; Yu W; Chen H; Chen Y BMC Med Educ; 2022 Apr; 22(1):258. PubMed ID: 35397598 [TBL] [Abstract][Full Text] [Related]
19. Diagnostic Accuracy of Artificial Intelligence-Based Automated Diabetic Retinopathy Screening in Real-World Settings: A Systematic Review and Meta-Analysis. Joseph S; Selvaraj J; Mani I; Kumaragurupari T; Shang X; Mudgil P; Ravilla T; He M Am J Ophthalmol; 2024 Jul; 263():214-230. PubMed ID: 38438095 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of an AI algorithm trained on an ethnically diverse dataset to screen a previously unseen population for diabetic retinopathy. Rao DP; Savoy FM; Sivaraman A; Dutt S; Shahsuvaryan M; Jrbashyan N; Hambardzumyan N; Yeghiazaryan N; Das T Indian J Ophthalmol; 2024 Aug; 72(8):1162-1167. PubMed ID: 39078960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]