These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 36420129)

  • 1. Multistimuli-responsive microrobots: A comprehensive review.
    Shah ZH; Wu B; Das S
    Front Robot AI; 2022; 9():1027415. PubMed ID: 36420129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomedical Applications of Untethered Mobile Milli/Microrobots.
    Sitti M; Ceylan H; Hu W; Giltinan J; Turan M; Yim S; Diller E
    Proc IEEE Inst Electr Electron Eng; 2015 Feb; 103(2):205-224. PubMed ID: 27746484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multistimuli-Responsive Hydroplaning Superhydrophobic Microrobots with Programmable Motion and Multifunctional Applications.
    Wang X; Lin D; Zhou Y; Jiao N; Tung S; Liu L
    ACS Nano; 2022 Sep; 16(9):14895-14906. PubMed ID: 36067035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable Modular Acoustic Microrobots.
    Cherukumilli S; Kirmizitas FC; Sokolich M; Valencia A; Karakan MÇ; White AE; Malikopoulos AA; Das S
    Int Conf Manip Autom Robot Small Scales; 2023 Oct; 2023():. PubMed ID: 38952454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation.
    Xu R; Xu Q
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustics-Actuated Microrobots.
    Xiao Y; Zhang J; Fang B; Zhao X; Hao N
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steerable acoustically powered starfish-inspired microrobot.
    Dillinger C; Knipper J; Nama N; Ahmed D
    Nanoscale; 2024 Jan; 16(3):1125-1134. PubMed ID: 37946510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pros and Cons: Magnetic versus Optical Microrobots.
    Sitti M; Wiersma DS
    Adv Mater; 2020 May; 32(20):e1906766. PubMed ID: 32053227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation Techniques Used in Shape-Forming Microrobotic Systems with Multiple Microrobots: A Review.
    Konara M; Mudugamuwa A; Dodampegama S; Roshan U; Amarasinghe R; Dao DV
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of the Microrobots: Stimuli-Responsive Materials and Additive Manufacturing Technologies Turn Small Structures into Microscale Robots.
    den Hoed FM; Carlotti M; Palagi S; Raffa P; Mattoli V
    Micromachines (Basel); 2024 Feb; 15(2):. PubMed ID: 38399003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in the Application of Piezoelectric Materials in Microrobotic Systems.
    Fath A; Xia T; Li W
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-driven soft microrobots based on hydrogels and LCEs: development and prospects.
    Gao Y; Wang X; Chen Y
    RSC Adv; 2024 Apr; 14(20):14278-14288. PubMed ID: 38694551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing bistability for directional propulsion of soft, untethered robots.
    Chen T; Bilal OR; Shea K; Daraio C
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5698-5702. PubMed ID: 29765000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responsive Magnetic Nanocomposites for Intelligent Shape-Morphing Microrobots.
    Liu Y; Lin G; Medina-Sánchez M; Guix M; Makarov D; Jin D
    ACS Nano; 2023 May; 17(10):8899-8917. PubMed ID: 37141496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustically powered surface-slipping mobile microrobots.
    Aghakhani A; Yasa O; Wrede P; Sitti M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3469-3477. PubMed ID: 32015114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High shear rate propulsion of acoustic microrobots in complex biological fluids.
    Aghakhani A; Pena-Francesch A; Bozuyuk U; Cetin H; Wrede P; Sitti M
    Sci Adv; 2022 Mar; 8(10):eabm5126. PubMed ID: 35275716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Stimuli-Responsive Tadpole-like Polymer/Lipid Janus Microrobots for Advanced Smart Material Applications.
    Okmen Altas B; Goktas C; Topcu G; Aydogan N
    ACS Appl Mater Interfaces; 2024 Mar; 16(12):15533-15547. PubMed ID: 38356451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microrobots for Targeted Delivery and Therapy in Digestive System.
    Wang Y; Shen J; Handschuh-Wang S; Qiu M; Du S; Wang B
    ACS Nano; 2023 Jan; 17(1):27-50. PubMed ID: 36534488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Untethered control of functional origami microrobots with distributed actuation.
    Novelino LS; Ze Q; Wu S; Paulino GH; Zhao R
    Proc Natl Acad Sci U S A; 2020 Sep; 117(39):24096-24101. PubMed ID: 32929033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multistimuli-Responsive Actuators Derived from Natural Materials for Entirely Biodegradable and Programmable Untethered Soft Robots.
    Chen Z; Gao B; Li P; Zhao X; Yan Q; Liu Z; Xu L; Zheng H; Xue F; Ding R; Xiong J; Tang Z; Peng Q; Hu Y; He X
    ACS Nano; 2023 Nov; 17(22):23032-23045. PubMed ID: 37939309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.