BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36420671)

  • 21. Hydrogen production driven by formate oxidation in Shewanella oneidensis MR-1.
    Xiong J; Chan D; Guo X; Chang F; Chen M; Wang Q; Song X; Wu C
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5579-5591. PubMed ID: 32303818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biogenic iron sulfide functioning as electron-mediating interface to accelerate dissimilatory ferrihydrite reduction by Shewanella oneidensis MR-1.
    Zhu F; Huang Y; Ni H; Tang J; Zhu Q; Long ZE; Zou L
    Chemosphere; 2022 Feb; 288(Pt 3):132661. PubMed ID: 34699878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biological removal of sulfamethoxazole enhanced by S. oneidensis MR-1 via promoting NADH generation and electron transfer and consumption.
    Zhao C; Li Y; Li X; Huang H; Zheng G; Chen Y
    J Hazard Mater; 2022 Mar; 426():127839. PubMed ID: 34838361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1.
    Shi L; Rosso KM; Clarke TA; Richardson DJ; Zachara JM; Fredrickson JK
    Front Microbiol; 2012; 3():50. PubMed ID: 22363328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electronic control of redox reactions inside Escherichia coli using a genetic module.
    Baruch M; Tejedor-Sanz S; Su L; Ajo-Franklin CM
    PLoS One; 2021; 16(11):e0258380. PubMed ID: 34793478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct electron uptake from a cathode using the inward Mtr pathway in Escherichia coli.
    Feng J; Jiang M; Li K; Lu Q; Xu S; Wang X; Chen K; Ouyang P
    Bioelectrochemistry; 2020 Aug; 134():107498. PubMed ID: 32179454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1.
    Schuetz B; Schicklberger M; Kuermann J; Spormann AM; Gescher J
    Appl Environ Microbiol; 2009 Dec; 75(24):7789-96. PubMed ID: 19837833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis.
    Cao Y; Li X; Li F; Song H
    ACS Synth Biol; 2017 Sep; 6(9):1679-1690. PubMed ID: 28616968
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Duhl KL; TerAvest MA
    Front Energy Res; 2019 Oct; 7():. PubMed ID: 33072733
    [No Abstract]   [Full Text] [Related]  

  • 30. Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective.
    Shi L; Rosso KM; Zachara JM; Fredrickson JK
    Biochem Soc Trans; 2012 Dec; 40(6):1261-7. PubMed ID: 23176465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel bacterial sulfite dehydrogenase that requires three
    Sun W; Xu Y; Liang Y; Yu Q; Gao H
    Appl Environ Microbiol; 2023 Oct; 89(10):e0110823. PubMed ID: 37732808
    [No Abstract]   [Full Text] [Related]  

  • 32. Evidence for Horizontal and Vertical Transmission of Mtr-Mediated Extracellular Electron Transfer among the
    Baker IR; Conley BE; Gralnick JA; Girguis PR
    mBio; 2021 Feb; 13(1):e0290421. PubMed ID: 35100867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing the extracellular electron transfer ability via Polydopamine@S. oneidensis MR-1 for Cr(VI) reduction.
    Jia B; Liu T; Wan J; Ivanets A; Xiang Y; Zhang L; Su X
    Environ Res; 2023 Jan; 217():114914. PubMed ID: 36427635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extracellular organic disulfide reduction by
    Phan J; Macwan S; Gralnick JA; Yee N
    Microbiol Spectr; 2024 Apr; 12(4):e0408123. PubMed ID: 38415659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The roles of DmsEFAB and MtrCAB in extracellular reduction of iodate by Shewanella oneidensis MR-1 with lactate as the sole electron donor.
    Guo J; Jiang Y; Hu Y; Jiang Z; Dong Y; Shi L
    Environ Microbiol; 2022 Nov; 24(11):5039-5050. PubMed ID: 35837844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrons selective uptake of a metal-reducing bacterium Shewanella oneidensis MR-1 from ferrocyanide.
    Zheng Z; Xiao Y; Wu R; Mølager Christensen HE; Zhao F; Zhang J
    Biosens Bioelectron; 2019 Oct; 142():111571. PubMed ID: 31445395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.
    Wu C; Cheng YY; Li BB; Li WW; Li DB; Yu HQ
    Bioresour Technol; 2013 May; 136():711-4. PubMed ID: 23558182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anaerobic reduction of high-polarity nitroaromatic compounds by electrochemically active bacteria: Roles of Mtr respiratory pathway, molecular polarity, mediator and membrane permeability.
    Xiao X; Ma XL; Wang LG; Long F; Li TT; Zhou XT; Liu H; Wu LJ; Yu HQ
    Environ Pollut; 2021 Jan; 268(Pt B):115943. PubMed ID: 33158624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic reduction of 2,6-dinitrotoluene by Shewanella oneidensis MR-1: Roles of Mtr respiratory pathway and NfnB.
    Liu DF; Min D; Cheng L; Zhang F; Li DB; Xiao X; Sheng GP; Yu HQ
    Biotechnol Bioeng; 2017 Apr; 114(4):761-768. PubMed ID: 27869299
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extracellular pollutant degradation feedback regulates intracellular electron transfer process of exoelectrogens: Strategy and mechanism.
    Huang J; Cai XL; Peng JR; Fan YY; Xiao X
    Sci Total Environ; 2022 Dec; 853():158630. PubMed ID: 36084783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.