These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 36420883)
1. Investigation of reactions occurring in waste combustion ash using thermal analysis coupled with gas analysis and characterization. Moutushi T; Castaldi MJ Waste Manag Res; 2023 Apr; 41(4):871-880. PubMed ID: 36420883 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of different carbon species. Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F Waste Manag; 2013 Feb; 33(2):373-81. PubMed ID: 23246084 [TBL] [Abstract][Full Text] [Related]
4. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Rocca S; van Zomeren A; Costa G; Dijkstra JJ; Comans RN; Lombardi F Waste Manag; 2012 Apr; 32(4):759-68. PubMed ID: 22226920 [TBL] [Abstract][Full Text] [Related]
5. Batch test assessment of waste-to-energy combustion residues impacts on precipitate formation in landfill leachate collection systems. Cardoso AJ; Levine AD; Rhea LR J Air Waste Manag Assoc; 2008 Jan; 58(1):19-26. PubMed ID: 18236791 [TBL] [Abstract][Full Text] [Related]
6. Coupled microwave hydrothermal dechlorination and geopolymer preparation for the solidification/stabilization of heavy metals and chlorine in municipal solid waste incineration fly ash. Yang W; Cao X; Zhang Q; Ma R; Fang L; Liu S Sci Total Environ; 2022 Dec; 853():158563. PubMed ID: 36087669 [TBL] [Abstract][Full Text] [Related]
7. Emission of Per- and Polyfluoroalkyl Substances from a Waste-to-Energy Plant─Occurrence in Ashes, Treated Process Water, and First Observation in Flue Gas. Björklund S; Weidemann E; Jansson S Environ Sci Technol; 2023 Jul; 57(27):10089-10095. PubMed ID: 37319344 [TBL] [Abstract][Full Text] [Related]
8. Accelerated and natural carbonation of a municipal solid waste incineration (MSWI) fly ash mixture: Basic strategies for higher carbon dioxide sequestration and reliable mass quantification. Sorrentino GP; Zanoletti A; Ducoli S; Zacco A; Iora P; Invernizzi CM; Di Marcoberardino G; Depero LE; Bontempi E Environ Res; 2023 Jan; 217():114805. PubMed ID: 36375507 [TBL] [Abstract][Full Text] [Related]
9. Experimental assessment of cement hydration and leaching characteristics for waste-to-energy bottom ash mixed with concrete. An J; Nam BH; Cho BH; Eun J J Air Waste Manag Assoc; 2021 Jul; 71(7):906-922. PubMed ID: 33818306 [TBL] [Abstract][Full Text] [Related]
10. Integrated thermal behavior and compounds transition mechanism of municipal solid waste incineration fly ash during thermal treatment process. Wang X; Ji G; Zhu K; Li C; Zhang Y; Li A Chemosphere; 2021 Feb; 264(Pt 1):128406. PubMed ID: 33010627 [TBL] [Abstract][Full Text] [Related]
11. Incinerator ash characterization - Implications for elevated temperature landfills. Villarruel-Moore A; Reinhart D; Sohn Y Waste Manag; 2022 Nov; 153():72-80. PubMed ID: 36055177 [TBL] [Abstract][Full Text] [Related]
12. A novel and sustainable technique to immobilize lead and zinc in MSW incineration fly ash by using pozzolanic bottom ash. Nag M; Shimaoka T J Environ Manage; 2023 Mar; 329():117036. PubMed ID: 36535140 [TBL] [Abstract][Full Text] [Related]
13. Influence of ignition process on mineral phase transformation in municipal solid waste incineration (MSWI) fly ash: Implications for estimating loss-on-ignition (LOI). Mu Y; Saffarzadeh A; Shimaoka T Waste Manag; 2017 Jan; 59():222-228. PubMed ID: 27742231 [TBL] [Abstract][Full Text] [Related]
14. Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives. Zhen G; Lu X; Zhao Y; Niu J; Chai X; Su L; Li YY; Liu Y; Du J; Hojo T; Hu Y J Environ Manage; 2013 Nov; 129():183-9. PubMed ID: 23933484 [TBL] [Abstract][Full Text] [Related]
15. Speciation of zinc in municipal solid waste incineration fly ash after heat treatment: an X-ray absorption spectroscopy study. Struis RP; Ludwig C; Lutz H; Scheidegger AM Environ Sci Technol; 2004 Jul; 38(13):3760-7. PubMed ID: 15296330 [TBL] [Abstract][Full Text] [Related]
16. A novel method for salts removal from municipal solid waste incineration fly ash through the molten salt thermal treatment. Xie K; Hu H; Cao J; Yang F; Liu H; Li A; Yao H Chemosphere; 2020 Feb; 241():125107. PubMed ID: 31683450 [TBL] [Abstract][Full Text] [Related]
17. Existence of Cl in municipal solid waste incineration bottom ash and dechlorination effect of thermal treatment. Yang S; Saffarzadeh A; Shimaoka T; Kawano T J Hazard Mater; 2014 Feb; 267():214-20. PubMed ID: 24462890 [TBL] [Abstract][Full Text] [Related]
18. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays. Ribé V; Nehrenheim E; Odlare M Waste Manag; 2014 Oct; 34(10):1871-6. PubMed ID: 24502934 [TBL] [Abstract][Full Text] [Related]
19. [MSW incineration fly ash melting by DSC-DTA]. Li R; Chi Y; Li S; Wang L; Yan J; Cen K Huan Jing Ke Xue; 2002 Jul; 23(4):113-7. PubMed ID: 12371091 [TBL] [Abstract][Full Text] [Related]
20. Morphochemical investigation on the enrichment and transformation of hazardous elements in ash from waste incineration plants. Ali MU; Liu Y; Yousaf B; Wong MH; Li P; Liu G; Wang R; Wei Y; Lu M Sci Total Environ; 2022 Jul; 828():154490. PubMed ID: 35302034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]