BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36420909)

  • 1. Synthesis and Characterization of Eugenia uniflora L. Silver Nanoparticles and L-Cysteine Sensor Application.
    Lopes IS; Cassas F; Veiga TAM; de Oliveira Silva FR; Courrol LC
    Chem Biodivers; 2023 Jan; 20(1):e202200787. PubMed ID: 36420909
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Franzolin MR; Courrol DDS; de Souza Barreto S; Courrol LC
    Microorganisms; 2022 May; 10(5):. PubMed ID: 35630442
    [No Abstract]   [Full Text] [Related]  

  • 3. Dextran coated silver nanoparticles - Chemical sensor for selective cysteine detection.
    Davidović S; Lazić V; Vukoje I; Papan J; Anhrenkiel SP; Dimitrijević S; Nedeljković JM
    Colloids Surf B Biointerfaces; 2017 Dec; 160():184-191. PubMed ID: 28934661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione and L-cysteine modified silver nanoplates-based colorimetric assay for a simple, fast, sensitive and selective determination of nickel.
    Kiatkumjorn T; Rattanarat P; Siangproh W; Chailapakul O; Praphairaksit N
    Talanta; 2014 Oct; 128():215-20. PubMed ID: 25059151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe.
    Yuan X; Tay Y; Dou X; Luo Z; Leong DT; Xie J
    Anal Chem; 2013 Feb; 85(3):1913-9. PubMed ID: 23270302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine.
    Bagci PO; Wang YC; Gunasekaran S
    J Food Sci; 2015 Sep; 80(9):N2071-8. PubMed ID: 26239641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A label-free turn-on-off fluorescent sensor for the sensitive detection of cysteine via blocking the Ag
    Li Y; Deng Y; Zhou X; Hu J
    Talanta; 2018 Mar; 179():742-752. PubMed ID: 29310302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric determination of L-cysteine in milk samples with surface functionalized silver nanoparticles.
    Sahu S; Sharma S; Kant T; Shrivas K; Ghosh KK
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():118961. PubMed ID: 33010538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-cysteine capped silver nanoparticles as chiral recognition sensor for ketoprofen enantiomers.
    Obaid A; Mohd Jamil AK; Saharin SM; Mohamad S
    Chirality; 2021 Nov; 33(11):810-823. PubMed ID: 34486177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitosan capped Ag/NiS nanocomposites: A novel colorimetric probe for detection of L-cysteine at nanomolar level and its anti-microbial activity.
    Kumar BH; Okla MK; Abdel-Maksoud MA; Al-Qahtani WH; AbdElgawad H; Altukhayfi MS; Thomas AM; Raju LL; Khan SS
    Int J Biol Macromol; 2021 Dec; 193(Pt B):2054-2061. PubMed ID: 34774598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple and rapid detection of free 3-monochloropropane-1,2-diol based on cysteine modified silver nanoparticles.
    Martin AA; Fodjo EK; Marc GBI; Albert T; Kong C
    Food Chem; 2021 Feb; 338():127787. PubMed ID: 32827901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric sensor for cysteine in human urine based on novel gold nanoparticles.
    Zhang Y; Jiang J; Li M; Gao P; Zhou Y; Zhang G; Shuang S; Dong C
    Talanta; 2016 Dec; 161():520-527. PubMed ID: 27769441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of maltol capped silver nanoparticles and their potential application as an antimicrobial agent and colorimetric sensor for cysteine.
    Naqvi S; Anwer H; Ahmed SW; Siddiqui A; Shah MR; Khaliq S; Ahmed A; Ali SA
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():118002. PubMed ID: 31923785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-functionalized silver nanoparticles: a novel colorimetric probe for cysteine detection.
    Borase HP; Patil CD; Salunkhe RB; Suryawanshi RK; Kim BS; Bapat VA; Patil SV
    Appl Biochem Biotechnol; 2015 Apr; 175(7):3479-93. PubMed ID: 25637511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence turn-on sensing of L-cysteine based on FRET between Au-Ag nanoclusters and Au nanorods.
    Li JJ; Qiao D; Zhao J; Weng GJ; Zhu J; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():247-255. PubMed ID: 30947133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial properties of amino acid functionalized silver nanoparticles decorated on graphene oxide sheets.
    Chandraker K; Nagwanshi R; Jadhav SK; Ghosh KK; Satnami ML
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 181():47-54. PubMed ID: 28329722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions.
    Soomro RA; Nafady A; Sirajuddin ; Memon N; Sherazi TH; Kalwar NH
    Talanta; 2014 Dec; 130():415-22. PubMed ID: 25159429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag+ and cysteine in aqueous solutions.
    Zhao C; Qu K; Song Y; Xu C; Ren J; Qu X
    Chemistry; 2010 Jul; 16(27):8147-54. PubMed ID: 20512822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatible silver nanoparticles prepared with amino acids and a green method.
    de Matos RA; Courrol LC
    Amino Acids; 2017 Feb; 49(2):379-388. PubMed ID: 27896446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. l-Cysteine modified silver nanoparticles-based colorimetric sensing for the sensitive determination of Hg
    Fan P; He S; Cheng J; Hu C; Liu C; Yang S; Liu J
    Luminescence; 2021 May; 36(3):698-704. PubMed ID: 33270343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.