These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A U-Net Architecture-Based Approach. Athaya T; Choi S Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33800106 [TBL] [Abstract][Full Text] [Related]
3. Fully convolutional neural network and PPG signal for arterial blood pressure waveform estimation. Zhou Y; Tan Z; Liu Y; Cheng H Physiol Meas; 2023 Sep; 44(7):. PubMed ID: 37402386 [No Abstract] [Full Text] [Related]
4. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model. Li Z; He W Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770514 [TBL] [Abstract][Full Text] [Related]
5. A continuous cuffless blood pressure measurement from optimal PPG characteristic features using machine learning algorithms. Nishan A; M Taslim Uddin Raju S; Hossain MI; Dipto SA; M Tanvir Uddin S; Sijan A; Chowdhury MAS; Ahmad A; Mahamudul Hasan Khan M Heliyon; 2024 Mar; 10(6):e27779. PubMed ID: 38533045 [TBL] [Abstract][Full Text] [Related]
6. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms. Baker S; Xiang W; Atkinson I Comput Methods Programs Biomed; 2021 Aug; 207():106191. PubMed ID: 34077866 [TBL] [Abstract][Full Text] [Related]
7. Prediction of arterial blood pressure waveforms from photoplethysmogram signals via fully convolutional neural networks. Cheng J; Xu Y; Song R; Liu Y; Li C; Chen X Comput Biol Med; 2021 Nov; 138():104877. PubMed ID: 34571436 [TBL] [Abstract][Full Text] [Related]
8. A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections. Lai K; Wang X; Cao C Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732827 [TBL] [Abstract][Full Text] [Related]
9. Subject-Based Model for Reconstructing Arterial Blood Pressure from Photoplethysmogram. Tang Q; Chen Z; Ward R; Menon C; Elgendi M Bioengineering (Basel); 2022 Aug; 9(8):. PubMed ID: 36004927 [TBL] [Abstract][Full Text] [Related]
10. Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation. Harfiya LN; Chang CC; Li YH Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922447 [TBL] [Abstract][Full Text] [Related]
11. Imputation of the continuous arterial line blood pressure waveform from non-invasive measurements using deep learning. Hill BL; Rakocz N; Rudas Á; Chiang JN; Wang S; Hofer I; Cannesson M; Halperin E Sci Rep; 2021 Aug; 11(1):15755. PubMed ID: 34344934 [TBL] [Abstract][Full Text] [Related]
12. DeepCNAP: A Deep Learning Approach for Continuous Noninvasive Arterial Blood Pressure Monitoring Using Photoplethysmography. Kim DK; Kim YT; Kim H; Kim DJ IEEE J Biomed Health Inform; 2022 Aug; 26(8):3697-3707. PubMed ID: 35511844 [TBL] [Abstract][Full Text] [Related]
13. DNN-BP: a novel framework for cuffless blood pressure measurement from optimal PPG features using deep learning model. Raju SMTU; Dipto SA; Hossain MI; Chowdhury MAS; Haque F; Nashrah AT; Nishan A; Khan MMH; Hashem MMA Med Biol Eng Comput; 2024 Dec; 62(12):3687-3708. PubMed ID: 38963467 [TBL] [Abstract][Full Text] [Related]
14. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time. Li Y; Wang Z; Zhang L; Yang X; Song J Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801 [TBL] [Abstract][Full Text] [Related]
15. A deep learning method for continuous noninvasive blood pressure monitoring using photoplethysmography. Liang H; He W; Xu Z Physiol Meas; 2023 May; 44(5):. PubMed ID: 37116508 [No Abstract] [Full Text] [Related]
16. Towards a portable-noninvasive blood pressure monitoring system utilizing the photoplethysmogram signal. Dagamseh A; Qananwah Q; Al Quran H; Shaker Ibrahim K Biomed Opt Express; 2021 Dec; 12(12):7732-7751. PubMed ID: 35003863 [TBL] [Abstract][Full Text] [Related]
17. A Comparison of Deep Learning Techniques for Arterial Blood Pressure Prediction. Paviglianiti A; Randazzo V; Villata S; Cirrincione G; Pasero E Cognit Comput; 2022; 14(5):1689-1710. PubMed ID: 34466163 [TBL] [Abstract][Full Text] [Related]
18. A novel method for continuous blood pressure estimation based on a single-channel photoplethysmogram signal. Hu Q; Deng X; Wang A; Yang C Physiol Meas; 2021 Jan; 41(12):125009. PubMed ID: 33166940 [TBL] [Abstract][Full Text] [Related]
19. Continuous Blood Pressure Estimation From Electrocardiogram and Photoplethysmogram During Arrhythmias. Liu Z; Zhou B; Li Y; Tang M; Miao F Front Physiol; 2020; 11():575407. PubMed ID: 33013491 [TBL] [Abstract][Full Text] [Related]
20. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques. Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]